Czasopismo
2024
|
Vol. 72, nr 5
|
art. no. e150338
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
Components used for the structure of the GLObal Solar Wind Structure experiment in the NASA Interstellar Mapping and Acceleration Probe space mission, made of AA6061-T6 alloy, are subjected to the coating process, where the temperature affects its mechanical properties. This paper aims to examine the impact of the coating thermal cycle on the mechanical properties of AA6061-T6 alloy, which is the load-carrying material in a spaceborne instrument. As a part of the manufacturing process, the parts made of AA6061-T6 are subjected to a coating process at a temperature of about 220◦C for a time longer than 1 hour. This treatment modifies the mechanical properties of the alloy. To evaluate the consequences of this change for spaceborne components, mechanical testing, and numerical simulation were conducted. It was found that as a result of the coating process, the reduction in AA6061-T6 yield strength is about 16%, which entails a decrease in the margins of safety by 25% at its maximum.
Rocznik
Tom
Strony
art. no. e150338
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Space Research Center, Polish Academy of Sciences (CBK PAN), Warsaw, Poland, tbarcinski@cbk.waw.pl
autor
- Department of Fatigue and Machine Design, Faculty of Mechanical Engineering, Military University of Technology, Warsaw, Poland
autor
- Space Research Center, Polish Academy of Sciences (CBK PAN), Warsaw, Poland
autor
- Space Research Center, Polish Academy of Sciences (CBK PAN), Warsaw, Poland
autor
- Space Research Center, Polish Academy of Sciences (CBK PAN), Warsaw, Poland
autor
- Space Research Center, Polish Academy of Sciences (CBK PAN), Warsaw, Poland
autor
- Space Research Center, Polish Academy of Sciences (CBK PAN), Warsaw, Poland
autor
- Space Research Center, Polish Academy of Sciences (CBK PAN), Warsaw, Poland
Bibliografia
- [1] A.M.A. El-Hameed and Y.A. Abdel-Aziz, “Aluminium Alloys in Space Applications: A Short Report,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 22, no. 1, p. 1, Jan. 2021, doi: .10.37934/araset.22.1.17.
- [2] S.V.S. Narayana Murty and S.C. Sharma, “Materials for Indian Space Program: An Overview,” J. Indian Inst. Sci., vol. 102, no. 1, pp. 513–559, Jan. 2022, doi: 10.1007/s41745-021-00284-8.
- [3] D.J. McComas et al., “Interstellar Mapping and Acceleration Probe (IMAP): A New NASA Mission,” Space Sci. Rev., vol. 214, no. 8, p. 116, Oct. 2018, doi: 10.1007/s11214-018-0550-1.
- [4] H.U. Nass, J.H. Zoennchen, G. Lay, and H.-J. Fahr, “The TWINS-LAD mission: Observations of terrestrial Lyman-𝛼 fluxes,” Astrophys. Space Sci. Trans., vol. 2, pp. 27–31, Jan. 2006, doi: 10.5194/astra-2-27-2006.
- [5] D.J. McComas et al., “The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) NASA Mission-of-Opportunity,” Space Sci. Rev., vol. 142, no. 1, pp. 157–231, Feb. 2009, doi: 10.1007/s11214-008-9467-4.
- [6] K. Farrell, “Materials Selection for the HFIR Cold Neutron Source; TOPICAL,” Oak Ridge National Lab. (ORNL), Oak Ridge, United States, Aug. 2001.
- [7] K. Farrell, “Assessment of aluminum structural materials for service within the ANS reflector vessel,” Oak Ridge National Lab. (ORNL), Oak Ridge, United States, 1995.
- [8] A. Polat, M. Avsar, and F. Ozturk, “Effects of the artificial-aging temperature and time on the mechanical properties and spring-back behavior of AA6061,” Materiali in Tehnologije, vol. 49, pp. 487–493, Aug. 2015, doi: 10.17222/mit.2013.154.
- [9] J.R. Davis, Aluminum and Aluminum Alloys. ASM International, 1993.
- [10] P. Dumitraschkewitz, S.S.A. Gerstl, L.T. Stephenson, P.J. Uggowitzer, and S. Pogatscher, “Clustering in Age-Hardenable Aluminum Alloys,” Adv. Eng. Mater., vol. 20, no. 10, p. 1800255, 2018, doi: 10.1002/adem.201800255.
- [11] P.T. Summers et al., “Overview of aluminum alloy mechanical properties during and after fires,” Fire Sci. Rev., vol. 4, no. 1, p. 3, Apr. 2015, doi: 10.1186/s40038-015-0007-5.
- [12] F. Ozturk, A. Sisman, S. Toros, S. Kilic, and R.C. Picu, “Influence of aging treatment on mechanical properties of 6061 aluminum alloy,” Mater. Des., vol. 31, no. 2, pp. 972–975, Feb. 2010, doi: 10.1016/j.matdes.2009.08.017.
- [13] G.D. Jiang, Y.H. Cai, C. Qiu, W.W. Zhang, and D.T. Zhang, “Effect of overaging on the microstructure, mechanical properties and crashing performance of thin-walled Al–Mg–Si–Cu alloy profiles,” J. Mater. Res. Technol., vol. 21, pp. 3074–3085, Nov. 2022, doi: 10.1016/j.jmrt.2022.10.137.
- [14] M. Song, “Modeling the hardness and yield strength evolutions of aluminum alloy with rod/needle-shaped precipitates,” Mater. Sci. Eng.: A, vol. 443, no. 1, pp. 172–177, Jan. 2007, doi: 10.1016/j.msea.2006.08.025.
- [15] S.V. Panin et al., “Effect of Operating Degradation in Arctic Conditions on Physical and Mechanical Properties of 09Mn2Si Pipeline Steel,” Procedia Eng., vol. 178, pp. 597–603, Jan. 2017, doi: 10.1016/j.proeng.2017.01.117.
- [16] A.V. Byakov et al., “Estimating mechanical state of AA2024 specimen under tension with the use of Lamb wave based ultrasonic technique,” Mol. Cryst. Liquid Cryst., vol. 655, no. 1, pp. 94–102, Sep. 2017, doi: 10.1080/15421406.2017.1360700.
- [17] S. Hussein, M. Al-Shammari, A. Takhakh, and M. Al-Waily, “Effect of Heat Treatment on Mechanical and Vibration Properties for 6061 and 2024 Aluminum Alloys,” J. Mech. Eng. Res. Develop., vol. 43, pp. 48–66, Jan. 2020.
- [18] G. Wang, G. Zhu, T. Li, and L. Kou, “Effect of heat treatment conditions on mechanical properties and springback of 6061 Aluminum alloy sheets,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 788, p. 012056, Jun. 2020, doi: 10.1088/1757-899X/788/1/012056.
- [19] K. Kadhim Hameed, K. Musa, and H. Dawood, “Investigation of Microstructural and Mechanical Properties of AA6061 alloy after heat treatment effects,” J. Adv. Res. Dyn. Control Syst., vol. 10, pp. 1835–1839, Jan. 2018.
- [20] W. Liu et al., “The Effects of Heat Treatment on Microstructure and Mechanical Properties of Selective Laser Melting 6061 Aluminum Alloy,” Micromachines, vol. 13, no. 7, p. 1059, Jun. 2022, doi: 10.3390/mi13071059.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b735117e-1fd3-456f-b8d1-0c6de9952313