Czasopismo
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
The violent swinging motion of a payload imposes significant safety problems for the operation of offshore ship-mounted cranes (offshore cranes). We therefore propose a stable experimental hoisting platform for an offshore crane payload positioning system with a parallel cable-driven method (PP-PCDM), and an adaptive cable-drive anti-swing tension (ACAT) control method based on the PP-PCDM is developed to resolve the problem of swinging of the payload by limiting its spatial position. The PP-PCDM enables synchronous tracking of the movement of the payload when the crane is working. When the payload deviates from a stable state due to an external disturbance, the anti-swing cables are immediately retracted or released based on the feedback signal. The spatial position of the payload is then limited by adjusting the length and tension of the parallel cables until the payload appears stationary from the perspective of the ship’s deck. Operational safety and efficiency is substantially improved, and the proposed PP-PCDM structure and ACAT control method can be applied to a variety of different types of cranes. The results of simulations and physical experiments show that the anti-swing effect exceeds 89.86%. The PP-PCDM enables excellent performance of synchronous tracking and hoisting assistance, and ensures that the rated lifting weight of the offshore crane is not affected.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
29--45
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Marine Engineering College, Dalian Maritime University, Dalian, China
autor
- Marine Engineering College, Dalian Maritime University, Dalian, China
autor
- Marine Engineering College, Dalian Maritime University, Dalian, China
autor
- Marine Engineering College, Dalian Maritime University, Dalian, China, shenghai_wang@dlmu.edu.cn
- National Center for International Research of Subsea Engineering Technology and Equipment, Dalian Maritime University, Dalian, China
autor
- Marine Engineering College, Dalian Maritime University, Dalian, China
- National Center for International Research of Subsea Engineering Technology and Equipment, Dalian Maritime University, Dalian, China
autor
- Marine Engineering College, Dalian Maritime University, Dalian, China
- National Center for International Research of Subsea Engineering Technology and Equipment, Dalian Maritime University, Dalian, China
autor
- Marine Engineering College, Dalian Maritime University, Dalian, China
Bibliografia
- 1. Hongzhang J, Xuliang Y. Ship control principle, second edition. Harbin Engineering University Press; 2001.
- 2. Li Z, Ma X, Li Y. Anti-swing control for a double-pendulum offshore boom crane with ship roll and heave movements. IEEE 16th International Conference on Control and Automation, pp. 165-170, Oct. 2020. DOI:10.1109/ICCA51439.2020.9264524.
- 3. Konrad Johan J, Ebbesen M, Hansen M. Development of point-to-point path control in actuator space for hydraulic knuckle boom crane. Modeling, Identification and Control, vol. 42, no. 3, pp. 113-129, 2021. DOI: 10.3390/act9020027.
- 4. Shamseldin M. Design of auto-tuning nonlinear PID tracking speed control for electric vehicle with uncertainty consideration. World Electric Vehicle Journal, vol. 14, no.4, Apr. 2023. DOI: 10.3390/wevj14040078.
- 5. De Kruif B, Rossin B. Pendulation control for dynamical positioning capable ship; Considerations on actuator usage. IFAC Papers Online, vol. 54, no. 16, pp. 120-125, Nov. 2021. DOI: 10.1016/j.ifacol.2021.10.082.
- 6. Goodarzi R, Korayem M, Tourajizadeh H, et al. Nonlinear dynamic modeling of a mobile spatial cable-driven robot with flexible cables. Nonlinear Dynamics, vol. 108, no. 4, pp. 3219-3245, Jun. 2022. DOI: 10.1007/s11071-022-07397-4.
- 7. Ashkoofaraz S, Lori A. Aerial load transportation with obstacle avoidance in observed environment. 2022 10th RSI International Conference on Robotics and Mechatronics, pp.248-253. 2022. DOI: 10.1109/ICRoM57054.2022.10025232.
- 8. Casas J, Chang C, Duenas V. Switched adaptive concurrent learning control using a stance foot model for gait rehabilitation using a hybrid exoskeleton. IFAC Papers Online, vol. 55, no. 41, pp. 187-192, Feb. 2023. DOI:10.1016/j.ifacol.2023.01.124.
- 9. Shenghao T, Huaitao S, Peng Z, et al.. Research on accurate motion control of cable crane based on variable structure sliding mode. Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 45, no. 6, p. 316, Jun. 2023. DOI:10.1007/s40430-023-04236-4.
- 10. Bin G, Yong C. Fuzzy robust fault-tolerant control for offshore ship-mounted crane system. Information Sciences, vol. 526, pp. 119-132, Jul. 2020. DOI: 10.1016/j.ins.2020.03.068.
- 11. Manh Cuonga H, Van Thai N, et al. Nonsingular fractionalorder integral fast-terminal sliding mode control for under actuated shipboard cranes. Journal of the Franklin Institute, vol. 359, pp. 6587-6606, 2022. DOI: 10.1109/CDC.2014.7040128.
- 12. Lu B, Fang Y, Sun N, et al. Nonlinear coordination control of offshore boom cranes with bounded control inputs. International Journal of Robust & Nonlinear Control, vol. 29, no. 4, pp. 1165-1181, Mar. 2019. DOI: 10.1109/ACC.2012.6314810.
- 13. Yuzhe Q, Yongchun F, Tong Y. An energy-based Nonlinear coupling control for offshore ship-mounted cranes. International Journal of Automation & Computing, vol. 15, no. 5, pp. 570-581, Oct. 2018. DOI: 10.1109/TSMC.2017.2700393.
- 14. Li X, Peng X, Geng Z. Anti-swing control for 2-D underactuated cranes with load hoisting/lowering: A couplingbased approach. ISA Transactions, vol. 95, pp. 372-378, Dec. 2019. DOI: 10.1016/j.isatra.2019.04.033.
- 15. Yuchi C, Tieshan L. Review of anti-swing control of shipboard cranes. IEEECAA Journal of Automatica Sinica, vol. 7, no. 2, pp. 346-354, Mar. 2020. DOI: 10.1109/JAS.2020.1003024.
- 16. Jianli W, Kexin L, Shenghai W, et al. Dynamic analysis and experiment of underactuated double-pendulum antiswing device for ship-mounted jib cranes. Polish Maritime Research, vol. 29, no. 4, pp. 145-154, Dec. 2022. DOI: 10.2478/pomr-2022-0052.
- 17. Shi H, Yao F, Yuan Z, et al. Enhanced-coupling-based tracking control of double pendulum gantry cranes. International Journal of Control Automation and Systems, vol. 20, no. 7, pp. 2260-2272, Jul. 2022. DOI: 10.1007/s12555-021-0401-9.
- 18. McKenzie R, Irani R. Motion compensation for maritime cranes during time-varying operations at the pendulum’s natural frequency. Mechanism and Machine Theory, vol. 168, p. 104573, Feb. 2022. DOI: 10.1016/j.mechmachtheory.2021.104573.
- 19. Xiyang H, Huanbin L, et al. Application of four-rope theory to integral hoisting of marine booster station. Engineering Journal of Wuhan University, vol. 51 (Sup), pp. 304-307, Aug. 2018. DOI: 10.1007/s12206-020-0415-x.
- 20. Bozkurt B, Erdogan M. Heave and horizontal displacement and anti-sway control of payload during ship-to-ship load transfer with an offshore crane on very rough sea conditions. Ocean Engineering, vol. 267, p. 113309, Jan. 2023. DOI: 10.1016/j.oceaneng.2022.113309.
- 21. Menghua Z, Yibin X, Xincheng T. Adaptive tracking control for double-pendulum overhead cranes subject to tracking error limitation, parametric uncertainties and external disturbances. Mechanical Systems and Signal Processing, vol. 76, pp. 15-32, Aug. 2016. DOI: 10.1016/j.ymssp.2016.02.013.
- 22. Ren Z, Verma A, Ataei B, et al. Model-free anti-swing control of complex-shaped payload with Offshore floating cranes and a large number of lift wires. Ocean Engineering, vol. 228, p. 108868, May 2021. DOI: 10.1016/j.oceaneng.2021.108868.
- 23. Casas J, Chang C, Duenas V. Concurrent learning control for treadmill walking using a cable-driven exoskeleton with FES. in American Control Conference, pp. 3019-3024, 2022. DOI: 10.23919/ACC53348.2022.9867186.
- 24. Ryszard B, Bartłomiej Z. Finite element fatigue analysis of unsupported crane. Polish Maritime Research, vol. 28, no. 1, pp. 127-135, Mar. 2021. DOI:10.2478/pomr-2021-0012.
- 25. Craig J. Introduction to robotics, mechanics and control, fourth edition. China Machine; 2019.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b6eac266-f1d2-444e-afe8-ce0c81e144e5