Czasopismo
2016
|
Vol. 16, no. 4
|
805--812
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Experiments were conducted to investigate the development of an ultrafine grain structure during compression with oscillatory torsion processing of high-purity aluminum (99.9%) with an initial grain size of 75 μm. The samples were processed using different deformation parameters: torsion frequency (f) and compression rate (v). The samples were examined using a scanning electron microscope equipped with a field emission gun and an electron backscattered diffraction detector. The results suggest that for high-purity aluminum an ultrafine-grained microstructure was obtained after a total effective strain (ɛft) of 45 in samples deformed at f = 1.6 Hz and v = 0.04 mm/s. A quantitative study of the microstructural parameters showed that the area fraction of the ultrafine grains (<1 μm) (A1μm) was 44%, the fraction of high-angle boundaries was 53%, and the average diameter of the grains was about 600 nm. The yield stress and ultimate tensile stress reached 127 and 137 MPa, respectively, after deformation at a total effective strain of 45. When the total effective strain reached 120, the mechanical strength of the material decreased. This suggests that the decrease in strength is associated with the operation of the recovery mechanism that decreases the boundary volume.
Czasopismo
Rocznik
Tom
Strony
805--812
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Materials Science, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland, kinga.rodak@polsl.pl
autor
- Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland, jacek.pawlicki@polsl.pl
Bibliografia
- [1] B. Verlinden, Severe plastic deformation of metals, in: Y.T. Zhu, et al. (Eds.),The Second and Third International Conference On Ultrafine Grained Materials, Metalurgija (Journal of Metallurgy), 7 (2004) 165–180.
- [2] M. Richert, J. Richert, J. Zasadzinski, S. Hawrylkiewicz, J. Dlugopolski, Effect of large deformations on the microstructure of aluminum alloys, Materials Chemistry and Physics 81 (2003) 528–530.
- [3] P.L. Sun, C.Y. Yu, P.W. Kao, C.P. Chang, Microstructural characteristics of ultrafine-grained aluminum produced by equal channel angular extrusion, Scripta Materialia 47 (2002) 377–381.
- [4] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, An investigation of microstructural evolution during equal- channel angular pressing, Acta Materialia 45 (1997) 4733–4741.
- [5] J. Huang, Z. Xu, Evolution mechanism of grain refinement based on dynamic recrystallization in multiaxially forged austenite, Materials Letters 60 (2006) 1854–1858.
- [6] M.T.P. Aguilar, The effect of cyclic torsion on the dislocation structure of drawn mild steel, Materials Research 9 (2006) 345–348.
- [7] A. Gholina, P.B. Prangnell, M.V. Markushev, The effect of strain path on the development of the deformation structures in severely deformed aluminum alloys processed by ECAE, Acta Materialia 48 (2000) 1115–1130.
- [8] M.V. Degtyarev, T.I. Chashchukhina, L.M. Voronova, A.M. Patselov, V.P. Pilyugin, Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion, Acta Materialia 55 (2007) 6039–6050.
- [9] A. Vorhauer, R. Pippan, On the homogeneity of deformation by high pressure torsion, Scripta Materialia 51 (2004) 921–925.
- [10] H. Garbacz, W. Pachla, T. Wierzchoń, K.J. Kurzydłowski, Processing by hydrostatic extrusion of titanium coated with aluminidies, Solid State Phenomena 114 (2006) 63–68.
- [11] Z. Cyganek, F. Grosman, The research of rolling process with cyclic change of the strain path, Steel Research International 79 (2008) 453–458.
- [12] K. Rodak, J. Pawlicki, Effect of compression with oscillatory torsion processing on the structure and properties of Cu, Journal of Materials Science & Technology 27 (2011) 1083– 1088.
- [13] F.J. Humpreys, Grain and subgrain characterization by electron backscatter diffraction, Journal of Materials Science 36 (2001) 3833–3854.
- [14] L. Chevalier, S. Calloch, F. Hild, Y. Marco, Digital image correlation used to analyze the multiaxial behavior of rubber-like materials, European Journal of Mechanics A: Solids 20 (2001) 169–181.
- [15] M.B. Prime, Cross-sectional mapping of residual stresses by measuring the surface contour after a cut, Journal of Engineering Materials and Technology 123 (2001) 162–168.
- [16] R.M. Molak, M.E. Kartal, Z. Pakieła, K.J. Kurzydłowski, The effect of specimen size and surface conditions on the local mechanical properties of 14MoV6 ferritic-pearlitic steel, Materials Science and Engineering A 651 (2016) 810–821.
- [17] M. Lewandowska, H. Garbacz, W. Pachla, A. Mazur, K.J. Kurzydłowski, Grain refinement in aluminium and the aluminium Al–Cu–Mg–Mn alloy by hydroextrusion, Materials Science – Poland 23 (2005) 279–286.
- [18] K. Rodak, J. Pawicki, Microstructure characterization of Cu processed by compression with oscillatory torsion, Materials Characterization 94 (2014) 37–45.
- [19] D. Hull, Introduction to Dislocation, Oxford, UK, Pergamon Press, 1975.
- [20] Z. Pakieła, H. Garbacz, M. Lewandowska, A. Drużycka- Wiencek, M. Suś-Ryszkowska, W. Zieliński, K.J. Kurzydłowski, Structure and properties of nanomaterials produced by severe plastic deformation, Nukleonica 51 (2006) 19–25.
- [21] N.Q. Chinh, G. Horváth, Z. Horita, T.G. Langdon, A new constitutive relationship for the homogeneous deformation of metals over a wide range of strain, Acta Materialia 52 (2004) 3555–3563.
- [22] A. Krishnaiah, U. Chakkingal, P. Venugopal, Production of ultrafine grain sizes in aluminum sheets by severe plastic deformation using the technique of groove pressing, Scripta Materialia 52 (2005) 1229–1233.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b68cc206-db02-45a8-add1-c43a6b1d7eb1