Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 44, no 4 | 535--562
Tytuł artykułu

Determination of an axial gas cyclone separator cut-off point by CFD numerical modeling

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the numerical simulation of a pilot-scale axial cyclone separator. The main purpose of this paper is to develop a numerical model that is able to foresee the cyclone separator cut-off point. This is crucial in blast furnace gas installation to capture large particles containing carbon and iron, while allowing smaller particles such as zinc and lead to pass through. The cut-off point must be designed to give a sufficiently high zinc and lead content in the sludge created after the second cleaning stage. This allows the sludge to become a commercial product. To design this cut-off point, an investigation of the influence of inlet gas velocity, temperature, and the angle of guiding vanes at the inlet was done. The developed CFD model was validated against experimental data on the fractional efficiency of the cyclone separator. The results were in good agreement with the experimental data for all parameters tested. The behavior of the particles inside the cyclone was also physically correct.
Słowa kluczowe
Wydawca

Rocznik
Strony
535--562
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44-100 Gliwice, Poland, arkadiusz.ryfa@polsl.pl
  • Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44-100 Gliwice, Poland
  • AGH University of Science and Technology, Department of Fuels Technology, Czarnowiejska 30, 30-059, Kraków, Poland
  • Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44-100 Gliwice, Poland
  • Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44-100 Gliwice, Poland
  • Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44-100 Gliwice, Poland
  • Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44-100 Gliwice, Poland
  • ArcelorMittal Poland, al. Piłsudskiego 92, 41-308 Dąbrowa Górnicza, Poland
  • Institute for Ferrous Metallurgy, Łukasiewicz Research Network, Karola Miarki 12, 44-100 Gliwice, Poland
  • Institute for Ferrous Metallurgy, Łukasiewicz Research Network, Karola Miarki 12, 44-100 Gliwice, Poland
  • Institute for Ferrous Metallurgy, Łukasiewicz Research Network, Karola Miarki 12, 44-100 Gliwice, Poland
  • Institute of Environmental Engineering, Polish Academy of Sciences, Marii Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
Bibliografia
  • [1] Lim J.H., Oh S.H., Kang S., Lee K.J., Yook S.J.: Development of cutoff size adjustable omnidirectional inlet cyclone separator. Sep. Purif. Technol. 276(2021),119397. doi: 10.1016/j.seppur.2021.119397
  • [2] Babaoglu N.U., Parvaz F., Hosseini S.H., Elsayed K, Ahmadi G.: Influence of the inlet cross-sectional shape on the performance of a multi-inlet gas cyclone. Powder Technol. 384(2021), 82–99. doi: 10.1016/j.powtec.2021.02.008
  • [3] Wang S., Luo K., Hu C., Fan J.: CFD-DEM study of the effect of cyclone arrangements on the gas-solid flow dynamics in the full-loop circulating fluidized bed. Chem. Eng. Sci. 172(2017), 199–215. doi: 10.1016/j.ces.2017.05.052
  • [4] Stanek W., Szega M., Blacha L., Niesler M., Gawron M.: Exergo-ecological assessment of auxiliary fuel injection into blast-furnace. Arch. Metall. Mater. 60(2015),711–719. doi: 10.1515/amm-2015-0196
  • [5] Li W., Huang Z., Li G., Ye C.: Effects of different cylinder roof structures on the vortex of cyclone separators. Sep. Purif. Technol. 296(2022), 121370. doi: 10.1016/j.seppur.2022.121370
  • [6] Hsu C.W., Huang S.H., Lin C.W., Hsiao T.C., Lin W.Y., Chen C.C.: An experimental study on performance improvement of the stairmand cyclone design. Aerosol Air Qual. Res. 14(2014), 3, 1003–1016. doi: 10.4209/aaqr.2013.04.0129
  • [7] Roloff C., Lukas E., Wachem B., Thévenin D.: Particle dynamics investigation by means of shadow imaging inside an air separator. Chem. Eng. Sci. 195(2019), 312–324. doi: 10.1016/j.ces.2018.09.020
  • [8] Celis G.E.O., Loureiro J.B.R., Lage P.L.C., Silva Freire A.P.: The effects of swirl vanes and a vortex stabilizer on the dynamic flow field in a cyclonic separator. Chem. Eng. Sci. 248(2022), 117099. doi: 10.1016/j.ces.2021.117099
  • [9] Babaoglu N.U., Hosseini S.H., Ahmadi G., Elsayed K.: The effect of axial cyclone inlet velocity and geometrical dimensions on the flow pattern, performance, acoustic noise. Powder Technol. 407(2022), 117692. doi: 10.1016/j.powtec.2022.117692
  • [10] Zhang R., Yang J., Han S., Hao X., Guan G.: Improving advantages and reducing risks in increasing cyclone height via an apex cone to grasp vortex end. Chin. J. Chem. Eng. 54(2022), 136–143. doi: 10.1016/j.cjche.2022.04.014
  • [11] Yoshida H.: Effect of apex cone shape and local fluid flow control method on fine particle classification of gascyclone. Chem. Eng. Sci. 85(2013), 55–61. doi: 10.1016/j.ces.2012.01.060
  • [12] Yang X., Yang J., Wang S., Zhao Y.: Effects of operational and geometrical parameters on velocity distribution and micron mineral powders classification in cyclone separators. Powder Technol. 407(2022), 117609. doi: 10.1016/j.powtec.2022.117609
  • [13] Huang A.N., Ito K., Fukasawa T., Yoshida H., Kuo H.P., Fukui K.: Classification performance analysis of a novel cyclone with a slit on the conical part by CFD simulation. Sep. Purif. Technol. 190(2018), 25–32. doi: 10.1016/j.seppur.2017.08.047
  • [14] Zheng Y., Ni L.: Numerical study on particles separation using a cyclone enhanced by shunt device: Effects of cylinder-to-cone ratio and vortex finder-to-cylinder ratio. Powder Technol. 408(2022), 117767. doi: 10.1016/j.powtec.2022.117767
  • [15] Pandey S., Brar L.S.: On the performance of cyclone separators with different shapes of the conical section using CFD. Powder Technol. 407(2022), 117629. doi:10.1016/j.powtec.2022.117629
  • [16] Martignoni W.P., Bernardo S., Quintani C.L.: Evaluation of cyclone geometry and its influence on performance parameters by computational fluid dynamics (CFD). Braz. J. Chem. Eng. 24(2007), 83–94. doi: 10.1590/S0104-66322007000100008
  • [17] Le D.K., Guo M., Yoon J.Y.: A hybrid CFD – deep learning methodology to improve the accuracy of cut-off diameter prediction in coarse-grid simulations for cyclone separators. J. Aerosol Sci. 170(2023), 106143. doi: 10.1016/j.jaerosci.2023.106143
  • [18] Wasilewski M., Brar L.S.: Effect of the inlet duct angle on the performance of cyclone separators. Sep. Purif. Technol. 213(2019), 19–33. doi: 10.1016/j.seppur.2018.12.023
  • [19] Xiang R.B., Lee K.W.: Effects of exit tube diameter on the flow field in cyclones. Part. Sci. Technol. 26(2008), 467–481. doi: 10.1080/02726350802367829
  • [20] Su Y., Zheng A., Zhao B.: Numerical simulation of effect of inlet configuration on square cyclone separator performance. Powder Technol. 210(2011), 293–303. doi:10.1016/j.powtec.2011.03.034
  • [21] Azadi M., Azadi M., Mohebbi A.: A CFD study of the effect of cyclone size on its performance parameters. J. Hazard. Mater. 182(2010), 835–841. doi: 10.1016/j.jhazmat.2010.06.115
  • [22] Oh J., Choi S., Kim J.: Numerical simulation of an internal flow field in a uniflow cyclone separator. Powder Technol. 274(2015), 135–145. doi: 10.1016/j.powtec.2015.01.015
  • [23] Chen L., Ma H., Sun Z., Ma G., Li P., Li C., Cong X.: Effect of inlet periodic velocity on the performance of standard cyclone separators. Powder Technol. 402(2022),117347. doi: 10.1016/j.powtec.2022.117347
  • [24] Zhang L., Chen Y., Zhao B., Dang M., Yao Y.: Numerical simulation on structure optimization of escape-pipe of cyclone separator with downward outlet. Powder Technol. 411(2022), 117588. doi: 10.1016/j.powtec.2022.117588
  • [25] Slack M.D., Prasad R.O., Bakker A., Boysan F.: Advances in cyclone modelling using unstructured grids. Chem. Eng. Res. Des. 78(2000), 1098–1104. doi:10.1205/026387600528373
  • [26] Shalaby H., Wozniak K., Wozniak G.: Particle-laden flow simulation in a cyclone separator. Proc. Appl. Math. Mech. 6(2006), 547–548. doi: 10.1002/pamm.200610254
  • [27] Dong S., Wang C., Zhang Z., Cai Q., Dong K., Cheng T., Wang B.: Numerical study of short-circuiting flow and particles in a gas cyclone. Particuology 72(2023), 81–93. doi: 10.1016/j.partic.2022.02.008
  • [28] Guo M., Yang L., Son H., Le D.K., Manickam S., Sun X., Yoon J.Y.: An overview of novel geometrical modifications and optimizations of gas-particle cyclone separators. Sep. Purif. Technol. 329(2024), 125136. doi: 10.1016/j.seppur.2023.125136
  • [29] Huang L., Yuan J., Pan M., Wu J., Qiao J., Jiang H., Duan C.: CFD simulation and parameter optimization of the internal flow field of a disturbed air cyclone centrifugal classifier. Sep. Purif. Technol. 307(2023), 122760. doi: 10.1016/j.seppur.2022.122760
  • [30] Stecko J., Stachura R., Niesler M., Bernasowski M., Klimczyk A.: Utilisation of metallurgical sludge by multi-layer sintering. Ironmak. Steelmak. 45(2018), 779–786.doi: 10.1080/03019233.2017.1337285
  • [31] ANSYS. Ansys Fluent Theory Guide. Canonsburg 2019.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b67d166f-3833-436d-af39-1bbd364f3766
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.