Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 23, iss. 1 | 61--86
Tytuł artykułu

A quick and cost-effective method for monitoring deforestation of oil sands mining activities using synthetic aperture radar and multispectral real-time satellite data from Sentinel-1 and Sentinel-2

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Alberta’s oil sands mining operations rank among the largest human-made structures globally. Monitoring through the use of Synthetic Aperture Radar (SAR) and Multispectral satellite imaging is an indispensable strategy in attaining sustainable development and mitigating deforestation in the third-largest verified oil reserves worldwide. This paper introduces a novel approach for cost-effective and reliable monitoring of deforestation caused by oil sands mining, avoiding cumbersome methods. It focuses on observing forest/non-forest areas affected by Suncor Energy Company’s mining assets in Alberta, using a combination of SAR and Multispectral satellite remote sensing. Radar images from Sentinel-1B and Multispectral images from Sentinel-2A were analyzed with SNAP 8.0 and QGIS within a time series from June 2017 to June 2020, providing detailed information to monitor better the potential environmental impact of oil sands mining activities in Canada. The Sentinel satellite system offers several advantages, including near-global coverage, elevated spatial resolution for detecting small-scale deforestation instances, and the ability to track temporal and dynamic changes through time-series analysis. Additionally, the system’s open data policy promotes accessibility, collaboration among researchers, and innovative deforestation monitoring applications. The research results hold potential value for decision-makers, enhancing the efficiency and sustainable development of Suncor’s mining operations.
Wydawca

Rocznik
Strony
61--86
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
  • Polytechnic University of Cartagena, Mining and Civil Engineering, Cartagena, Spain, jg6377731@gmail.com
  • Polytechnic University of Cartagena, Mining and Civil Engineering, Cartagena, Spain
Bibliografia
  • [1] Gibson JJ, Peters DL. Water and environmental management in oil sands regions. J. Hydrol. Reg. Stud. Dec. 2022;44: 101274. https://doi.org/10.1016/j.ejrh.2022.101274.
  • [2] Roberts DR, Hazewinkel RO, Arciszewski TJ, Beausoleil D, Davidson CJ, Horb EC, et al. An integrated knowledge synthesis of regional ambient monitoring in Canada’s oil sands. Integr. Environ. Assess. Manag. 2022;18(2):428-41.
  • [3] Asadzadeh S, de Oliveira WJ, de Souza Filho CR. UAV-based remote sensing for the petroleum industry and environmental monitoring: state-of-the-art and perspectives. J Pet Sci Eng 2022;208:109633.
  • [4] Dube MG, Dunlop JM, Davidson C, Beausoleil DL, Hazewinkel RRO, Wyatt F. History, overview, and governance of environmental monitoring in the oil sands region of Alberta, Canada. Integr. Environ. Assess. Manag. 2022;18(2): 319-32. https://doi.org/10.1002/ieam.4490.
  • [5] Indarto J, Mutaqin Dadang J. An overview of theoretical and empirical studies on deforestation. J. Int. Dev. Coop. 2016; 22(1 & 2):107-20. Retrieved from: https://mpra.ub.uni-muenchen.de/70178/1/JIDC_22-2_107.pdf.
  • [6] Lawrence D, Coe M, Walker W, Verchot L, Vandecar K. The unseen effects of deforestation: biophysical effects on climate. Front. For. Glob. Change 2022;5. Accessed: Jan. 21, 2023. [Online], https://www.frontiersin.org/articles/10.3389/ffgc.2022.756115.
  • [7] Kahn J, D’Arcy S, Weis T, Black T. Line in the tar sands: struggles for environmental justice. PM Press; 2014.
  • [8] Xing R, Chiappori DV, Arbuckle EJ, Binsted MT, Davies EGR. Canadian oil sands extraction and upgrading: a synthesis of the data on energy consumption, CO2 emissions, and supply costs. Energies Jan. 2021;14:19. https://doi.org/10.3390/en14196374. Art. no. 19.
  • [9] Fydrych M. ‘Evaluating multi-temporal DInSAR measurements of ground surface deformation around the rhenish coalfields in Germany using sentinel-1 SAR imagery’, master thesis. University of Waterloo; 2021. Accessed: Jan. 15, 2023. [Online], https://uwspace.uwaterloo.ca/handle/10012/17059.
  • [10] Palaniyandi M, Manivel P, Sharmila T, Thirumalai P. The use of multispectral (mss) and synthetic aperture radar (SAR) microwave remote sensing data to study environment variables, land use/land cover changes, and recurrent weather condition for forecast malaria: a systematic review. Appl Ecol Environ Sci Apr. 2021;9(4):490-501. https://doi.org/10.12691/aees-9-4-10.
  • [11] Moreira A, Prats-Iraola P, Younis M, Krieger G, Hajnsek I, Papathanassiou KP. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. Mar. 2013;1(1):6-43. https://doi.org/10.1109/MGRS.2013.2248301.
  • [12] Landgrebe D. Information extraction principles and methods for multispectral and hyperspectral image data. In: Information processing for remote sensing. World Scientific; 1999. p. 3-37. https://doi.org/10.1142/9789812815705_0001.
  • [13] Jing R, Duan F, Lu F, Zhang M, Zhao W. Cloud removal for optical remote sensing imagery using the SPA-CycleGAN network. J Appl Remote Sens Aug. 2022;16(3):034520. https://doi.org/10.1117/1.JRS.16.034520.
  • [14] Li J, Zhang Y, Sheng Q, Wu Z, Wang B, Hu Z, et al. Thin cloud removal fusing full spectral and spatial features for sentinel-2 imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022;15:8759-75. https://doi.org/10.1109/JSTARS.2022.3211857.
  • [15] Isgro MA, Basallote MD, Caballero I, Barbero L. Comparison of uas and sentinel-2 multispectral imagery for water quality monitoring: a case study for acid mine drainage affected areas (SW Spain). Remote Sens 2022;14(16):4053.
  • [16] Zhang H, Ma Y, Zhang J, Zhao X, Zhang X, Leng Z. Atmospheric correction model for water land boundary adjacency effects in landsat-8 multispectral images and its impact on bathymetric remote sensing. Remote Sens 2022; 14(19):4769.
  • [17] Land cover mapping in cloud-prone tropical areas using sentinel-2 data: integrating spectral features with ndvi temporal dynamics. Remote Sens Apr. 2020;12(7):1163. https://doi.org/10.3390/RS12071163.
  • [18] ‘Development of statistical based decision tree algorithm for mixed class classification with sentinel-2 data’, presented at the international geoscience and remote sensing symposium. IEEE; Sep. 2020. p. 2304-7. https://doi.org/10.1109/IGARSS39084.2020.9324545.
  • [19] Wide-area near-real-time monitoring of tropical forest degradation and deforestation using sentinel-1. Remote Sens Oct. 2020;12(19):3263. https://doi.org/10.3390/RS12193263.
  • [20] Sentinel-1 GRD Preprocessing Workflow Jun. 2019;18(1):11. https://doi.org/10.3390/ECRS-3-06201.
  • [21] Sentinel-2 data for land cover/use mapping: a review. Remote Sens Jul. 2020;12(14):2291. https://doi.org/10.3390/RS12142291.
  • [22] Reinisch EC, Ziemann A, Flynn EB, Theiler J. Combining multispectral imagery and synthetic aperture radar for detecting deforestation. In: Algorithms, technologies, and applications for multispectral and hyperspectral imagery XXVI. SPIE; 2020. p. 72-85.
  • [23] Lu M, Hamunyela E. ON-LINE change monitoring with transformed multi-spectral time series, a study case in tropical forest. Int Arch Photogram Rem Sens Spatial Inf Sci Oct. 2016;XLI-B7:987-https://doi.org/10.5194/isprs-archives-XLI-B7-987-2016.
  • [24] Lei Y, Treuhaft R, Keller M, dos-Santos M, Gonçalves F, Neumann M. Quantification of selective logging in tropical forest with spaceborne SAR interferometry. Remote Sens Environ Jun. 2018;211:167-83. https://doi.org/10.1016/j.rse.2018.04.009.
  • [25] ‘A time-series model for characterizing continuous land cover change’, presented at the International Geoscience and Remote Sensing Symposium. IEEE; Jul. 2016. p. 3426-9. https://doi.org/10.1109/IGARSS.2016.7729885.
  • [26] Estimation of surface roughness over bare agricultural soil from Sentinel-1 data. Apr. 2018. Accessed: Jul. 08, 2023. [Online], https://typeset.io/papers/estimation-of-surface- roughness-over-bare-agricultural-soil-1v01a21rk6.
  • [27] Relation between ERS-1 synthetic aperture radar data and measurements of surface roughness and moisture content of rocky soils in a semiarid rangeland. Water Resour Res Jun. 1998;34(6):1491-8. https://doi.org/10.1029/98WR00032.
  • [28] Integration of L-band derived soil roughness into a bare soil moisture retrieval approach from C-band SAR data. Remote Sens May 2021;13(11):2102. https://doi.org/10.3390/RS13112102.
  • [29] Simultaneously estimating surface soil moisture and roughness of bare soils by combining optical and radar data. Int. J. Appl. Earth Obs. Geoinformation Aug. 2021;100: 102345. https://doi.org/10.1016/J.JAG.2021.102345.
  • [30] Kirsch A, Opeña Disterhoft J, Marr G, Breech R, Louvel Y, Aitken G, et al. Banking on Climate Change. Fossil Fuel Finance Report Card 2017. Rainforest Action Network (RAN) 2017:58. Retrieved from: https://www.ran.org/wp-content/uploads/2018/06/RAN_Banking_On_Climate_Change_2017_final.pdf.
  • [31] ‘Alberta Government’. Government of Alberta open datasets and publications, Jan. 21, 2023, https://open.alberta.ca/dataset?q=suncor&sort=score+desc. accessed Jan. 21, 2023).
  • [32] ‘Alberta Energy - Geoview’. Alberta Energy - Geoview, Jan. 21, 2023,https://gis.energy.gov.ab.ca/Geoview/OSPNG. accessed Jan. 21, 2023).
  • [33] ‘Open Access Hub’. https://scihub.copernicus.eu/; Jan. 21, 2023. accessed Jan. 21, 2023).
  • [34] User guides - sentinel-1 SAR - sentinel online - sentinel online. https://sentinels.copernicus.eu/web/sentinel/user- guides/sentinel-1-sar; Jan. 21, 2023 (accessed Jan. 21, 2023).
  • [35] The Sentinel missions - (ESA). https://www.esa.int/Applications/Observing_the_Earth/Copernicus/The_Sentinel_missions; Jan. 21, 2023. accessed Jan. 21, 2023).
  • [36] Rouse JW, Haas RH, Schell JA, Deering DW. Monitoring vegetation systems in the great plains with ERTS. Jan. 1974. Accessed: Jan. 21, 2023. [Online], https://ntrs.nasa.gov/citations/19740022614.
  • [37] Gao B. NDWIda normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ Dec. 1996;58(3):257-66. https://doi.org/10.1016/S0034-4257(96)00067-3.
  • [38] Sentinel 2. https://blogs.fu-berlin.de/reseda/sentinel-2/. accessed Jul. 11, 2023).
  • [39] Doxaran D, Froidefond J-M, Lavender S, Castaing P. Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations. Remote Sens Environ Jul. 2002;81(1):149-61. https://doi.org/10.1016/S0034-4257(01)00341-8.
  • [40] Belgiu M, Dragut L. Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogrammetry Remote Sens Apr. 2016;114:24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011.
  • [41] Du P, Samat A, Waske B, Liu S, Li Z. Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS J Photogrammetry Remote Sens Jul. 2015;105:38-53. https://doi.org/10.1016/j.isprsjprs.2015.03.002.
  • [42] Stumpf A, Kerle N. Object-oriented mapping of landslides using Random Forests. Remote Sens Environ Oct. 2011; 115(10):2564-77. https://doi.org/10.1016/j.rse.2011.05.013.
  • [43] Hall-Beyer M. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int J Rem Sens Mar. 2017;38(5): 1312-38. https://doi.org/10.1080/01431161.2016.1278314.
  • [44] Monitoring the environmental impact of mining in remote locations through remotely sensed data. Geocarto Int Mar. 2006;21(1):33-42. https://doi.org/10.1080/10106040608542372.
  • [45] Monitoring natural resources in conflict using an object-based multiscale image analysis approach. Jun. 2010. Accessed: Jul. 10, 2023. [Online], https://typeset.io/papers/monitoring-natural-resources-in-conflict-using-an-object-1svzoa55a0.
  • [46] First experience with Remote Sensing methods and selected sensors in the monitoring of mining areas - a case study of the Belchatow open cast mine Jan. 2018;vol. 29:00023. https://doi.org/10.1051/E3SCONF/20182900023.
  • [47] Forest health monitoring using hyperspectral remote sensing techniques. Jan. 2021. p. 239-57. https://doi.org/10.1007/978-3-030-56542-8_10.
  • [48] Aaron M. ”An Evaluation of Sentinel-1 and Sentinel-2 for Land Cover Classification”. International Development, Community and Environment (IDCE) 2019. 235. Retrieved from: https://commons.clarku.edu/idce_masters_papers/235.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b62c7133-7de2-4e7f-8f30-f2c7086c29f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.