Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 64, nr 2 | 110--117
Tytuł artykułu

Transmission in combination of structures

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper investigated the effect of the combination of two structures on the transmission of electromagnetic waves as a multilayer filter. Examined how the combination of two structures affect the properties of the filter. As a component materials of structures used both right-handed material (RHM) and left-handed (LHM). Design/methodology/approach: Analysis was performed using a matrix method for calculating the superlattice transmission. The influence of combination of two types of multilayer systems: periodic (binary superlattice) and aperiodic (Severin’s and Thue-Morse’s superlattices). Findings: Studies have shown the structure of the transmission band of the structures, which is dependent on the polarization of the incident wave. Combination of various structures are not commutative, and therefore their transmission maps are not equal. Research limitations/implications: The structures analyzed in the work consisted of a lossless material, isotropic and non-dispersive. An important analysis would be lossy dispersive materials. You should also examine the impact would have a separating layer structure and the influence of defects on transmission properties of superlattices. Practical implications: The test structures may be used as filters of electromagnetic radiation. Placing the filter characteristics of the two structures allows pre-filtering an electromagnetic wave, in order to obtain a structure suitable for applications. Originality/value: The paper shows how combination of two periodic and aperiodic structures affect the propagation of electromagnetic waves in a multi-layered system. The analysis was based on the determination of unpolarized transmission maps for complex structures.
Słowa kluczowe
Wydawca

Rocznik
Strony
110--117
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
  • Institute of Physics, ul. Armii Krajowej 19, 42-200 Częstochowa, Technical University of Częstochowa, Poland, gari.sg@gmail.com
autor
  • Institute of Physics, ul. Armii Krajowej 19, 42-200 Częstochowa, Technical University of Częstochowa, Poland
autor
  • Institute of Materials Engineering, ul. Armii Krajowej 19, 42-200 Częstochowa, Technical University of Częstochowa, Poland
  • Institute of Physics, ul. Armii Krajowej 19, 42-200 Częstochowa, Technical University of Częstochowa, Poland
autor
  • Institute of Physics, ul. Armii Krajowej 19, 42-200 Częstochowa, Technical University of Częstochowa, Poland
autor
  • Institute of Physics, ul. Armii Krajowej 19, 42-200 Częstochowa, Technical University of Częstochowa, Poland
Bibliografia
  • [1] M. Born, E. Wolf, Principles of Optics, Pergamon Press, London 1968.
  • [2] P. Yeh, Optical Waves in Layered Media, John Wiley & Sons, New York 1988.
  • [3] L. M. Briechowski, Wołny w słoistych sriedach, Nauka, Moskwa 1973.
  • [4] A. Yariv, P. Yeh, Optical Waves in Crystals. Propagation and Control of Laser Radiation, John Wiley & Sons, New York 1984.
  • [5] A. Rostami, S. Matloub, Exactly solvable inhomogeneous Fibonacci-class quasi-periodic structures (optical filtering), Opt. Comm. 247, 247–256 (2005).
  • [6] V. G. Veselago, Elektrodinamika veshchestv s odnovremeno otricatelnymi znacheniami ε i μ, Usp. Fiz. Nauk 92, 517–529 (1968).
  • [7] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, Composite Medium with Negative Permeability and Permittivity, Phys. Rev. Lett. 84, 4184–4187 (2000)
  • [8] E. Cubukcu, K. Aydin, E. Ozbay S. Foteinopoulou, C. M. Soukoulis, Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens, Phys. Rev. Lett. 91, 207401 (2003).
  • [9] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C. M. Soukoulis, Electromagnetic waves: Negative refraction by photonic crystals, Nature 423, 604–605 (2003).
  • [10] K. Yu. Bliokh, Yu. P. Bliokh, What are the left-handed media and what is interesting about them, dostępne w EBP arXiv:physics/0408135 (2004).
  • [11] P. Markos, C. M. Soukoulis, Left-handed Materials, dostępne w EBP arXiv:condmat/0212136, (2002).
  • [12] A. L. Pokrovsky, A. L. Efros, Sign of refractive index and group velocity in left-handed media, Solid St. Comm. 124, 283–287 (2002).
  • [13] Eds. Krowne C. M., Zhang Y., Physics of Negative Refraction and Negative Index Materials, Springer 2007.
  • [14] Ramakrishna S. A., Grzegorczyk T. M., Physics and Applications of Negative Refractive Index Materials, SPIE Press and CRC Press 2009.
  • [15] Klauzer-Kruszyna A.: Propagacja światła spolaryzowanego w wybranych supersieciach aperiodycznych. Praca doktorska, Wrocław (2005).
  • [16] Garus S., Duś-Sitek M., Zyzik E.: Wpływ domieszki żelaza na własności transmisyjne supersieci FexNi(1-x)/Cu. Nowe Technologie i Osiągnięcia w Metalurgii i Inżynierii Materiałowej. XII Międzynarodowa Konferencja Naukowa. Cz.2., Częstochowa (2011).
  • [17] Garus S., Garus J., Gruszka K.: Emulacja propagacji fali elektromagnetycznej w supersieciach przy użyciu algorytmu FDTD = Emulation of Electromagnetic Wave Propagation in Superlattices Using FDTD Algorithm. New Technologies and Achievements in Metallurgy and Materials Engineering. A Collective Monograph Edited by Henryk Dyja,
  • Anna Kawałek. Chapter 2., Wydawnictwo WIPMiFS Politechniki Częstochowskiej (2012) 768÷771.
  • [18] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2486–2489 (1987).
  • [19] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Phys. Rev. Lett. 58, 2059–2062 (1987).
  • [20] E. Yablonovitch, Kryształy fotoniczne, półprzewodniki światła, Świat Nauki 126 (2), 46–53 (2002).
  • [21] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals. Molding the Flow of Light, Princeton University Press, Singapore 1995.
  • [22] S. G. Johnson, J. D. Joannopoulos, Photonic Crystals. The Road from Theory to Practice, Kluwer Academic Publishers, Boston 2002.
  • [23] Silicon Photonics, Ed.: D. J. Lockwood, L. Pavesi, Springer-Verlag, Heidelberg 2004, seria Applied Physics vol. 94.
  • [24] K. Sakoda, Optical Properties of Photonic Crystals, Springer-Verlag, Berlin 2001
  • [25] A. Bjarklev, J. Broeng, A. S. Bjarklev, Photonic Crystal Fibers, Kluwer Academic Publishers, Boston 2003.
  • [26] D. S. Shechmtan, I. Blench, D. Gratias, J. W. Cahn, Metallic phase with long-ranged orientational order and no translational symmetry, Phys. Rev. Lett. 53, 1951–1953 (1984).
  • [27] D. Levine, P. J. Steinhardt, Quasicrystals: A new class of ordered structures, Phys. Rev. Lett. 53, 2477–2480 (1984).
  • [28] D. Levine, P. J. Steinhardt, Quasicrystals. I. Definition and structure, Phys. Rev. B 34, 596–616 (1986).
  • [29] P. J. Steinhardt, S. Ostlund, The Physics of Quasicrystals,World Scientific, Singapore 1987.
  • [30] P. Guyot, P. Krammer, M. de Boissieu, Quasicrystals, Rep.Prog. Phys., 54, 1373–1425 (1991).
  • [31] Quasicrystals: The State of the Art, Ed.: D. P. DiVincenzo, P. J. Steinhardt, World Scientific, Singapore 1991.
  • [32] S. J. Poon, Electronic properties of quasicrystals. An experimental review, Adv. Phys. 41, 303 (1992).
  • [33] Ch. Hu, R. Wang, D.-H. Ding, Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals, Rep. Prog. Phys. 63, 1–39 (2002).
  • [34] L. Esaki, R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM J. Res. Develop. 14, 61–65 (1970).
  • [35] A. Wacker, Semiconductor superlattices: a model system for nonlinear transport, Phys. Rep. 357, 1–111 (2002).
  • [36] M. Gluck, A. R. Kolovsky, H. J. Korsch, Wannier-Stark resonances in optical and semiconductor superlattices, Phys. Rep. 366, 103–182 (2002).
  • [37] E. L. Albuquerque, M. G. Cottam, Theory of elementary excitations in quasicrystals structures, Phys. Rep. 376, 225–337 (2003).
  • [38] E. Abe, Y. Yan, S. J. Pennycook, Quasicrystals as clustermaggregates, Nature Materials 3, 759–767 (2004).
  • [39] X. Zhou, Ch. Hu, P. Gong, Sh. Qiu, Nonlinear elastic properties of decagonal quasicrystals, Phys. Rev. B 70, 94202–94206 (2004).
  • [40] L. Jacak, P. Hawrylak, A.Wójs, Quantum Dots, Springer-Verlag, Berlin Heidelberg New York 1998.
  • [41] Nanostructured Materials and Nanotechnology, Ed.: H. S. Nalwa,mAcademic Press, New York 2002.
  • [42] M. Kohler, W. Fritzsche, Nanotechnology: an introduction tonanostructuring techniques, Wiley-VCH Verlag, Weinheim 2004.
  • [43] Handbook of nanophase and nanostructured materials, Vol. 1,mSynthesis, Ed.: Z. L. Wang, Y. Liu, Z. Zhang, Kluwer Academic/PlenummPublishers, New York 2003.
  • [44] M. Jurczyk, J. Jakubowicz, Nanomateriały ceramiczne, Wyd. Politechniki Poznańskiej, Poznań 2004.
  • [45] Severin M., Dulea M., Riklund R.: J. Phys.: Condens. Matter 1m(1989) 8851.
  • [46] F. Axel, J.P. Allouche, M. Kleman, M. Mendes-France, J.mPeyriere: J. Physique Coll. 47, C3 (19S6).
  • [47] R. Riklund, M. Severin, Y. Liu: Int. J. Mod. Phys. 1 (1987).
  • [48] Z. Cheng, R. Savit, R. Merlin: Phys. Rev.B37 (1988).
  • [49] F. Axel, J. Peyriere: J. Stat. Phys. 57 (1989).
  • [50] M. Kolar. K. Ali, F. Nori: Phys. Rev. B43 (1991).
  • [51] J.X. Zhong, J.R. Yan, J.Q. You: J. Phys.: Condens. Matter 3 (1991).
  • [52] C.S. Ryu, G.Y. Oh, M.H. Lee: Phys. Rev. B48 (1993).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b5fd91a8-4109-45bf-b905-e5288edb147b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.