Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 47, nr 3 | 714--724
Tytuł artykułu

Unique common fixed point theorems for pairs of hybrid maps under a new condition in partial metric spaces

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we introduce a new condition namely, ‘condition (W.C.C)’ and obtain two unique common fixed point theorems for pairs of hybrid mappings on a partial Hausdorff metric space without using any continuity and commutativity of the mappings.
Wydawca

Rocznik
Strony
714--724
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar - 522 510, A.P., India, kprrao2004@yahoo.com
  • Department of Mathematics, Gitam University, Rudraram(V), Patancheru(M), Hyderabad - 502 329, A.P., India, krkr08@gmail.com
Bibliografia
  • [1] B. Damjanovic, B. Samet, C. Vetro, Common fixed point theorems for multi-valued maps, Acta Math. Sci. (English Ed.) 32 (2012), 818–824.
  • [2] B. D. Rouhani, S. Moradi, Common fixed point of multivalued generalized φ-weak contractive mappings, Fixed Point Theory Appl. vol. 2010, Artical ID 708984, 13 pages.
  • [3] C. Di Bari, P. Vetro, Fixed points for weak φ-contractions on partial metric spaces, Int. J. Contemp. Math. Sci. 1(1) (2011), 5–13.
  • [4] C. Di Bari, Z. Kadelburg, H. K. Nashine, S. Radenovic, Common fixed points of g-quasicontractions and related mappings in 0-complete partial metric spaces, Fixed Point Theory Appl. vol. 2012, 2012:113, 13 pages.
  • [5] C. Di Bari, M. Milojevic, S. Radenovic, P. Vetro, Common fixed points for selfmappings on partial metric spaces, Fixed Point Theory Appl. vol. 2012, 2012:140, 10 pages.
  • [6] D. Paesano, P. Vetro, Suzki’s type characterization of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl. 159(3) (2012), 911–920.
  • [7] F. Vetro, S. Radenovic, Nonlinear -quasi-contractions of Ciric-type in partial metric spaces, Appl. Math. Comput. 219 (2012), 1594–1600.
  • [8] H. Covitz, S. B. Nadler Jr., Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5–11.
  • [9] H. Aydi, M. Abbas, C. Vetro, Partial Hausdrouff metric and Nadler’s fixed point theorem on partial metric space, Topology Appl. 159(14) (2012), 3234–3242.
  • [10] I. Altun, H. Simsek, Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud. 1 (2008), 1–8.
  • [11] I. Altun, F. Sola , H. Simsek, Generalized contractions on partial metric spaces, Topology Appl. 157 (2010), 2778–2785.
  • [12] K. P. R. Rao, G. N. V. Kishore, A unique common fixed point theorem for four maps under (Ψ - Φ) contractive condition in partial metric spaces, Bull. Math. Anal. Appl. 3(3) (2011), 56–63.
  • [13] K. P. R. Rao, G. N. V. Kishore, K. A. S. N. V. Prasad, A unique common fixed point theorem for two maps under (Ψ - Φ) contractive condition in partial metric spaces, Math. Sci. (Springer open Journal), 6:9, 2012, 4 pages.
  • [14] Lj. Ciric, Fixed points for generalized multi-valued contractions, Mat. Vesnik 9 (1972), 265–272.
  • [15] Lj. Ciric, Multi-valued nonlinear contraction mappings, Nonlinear Anal. 71 (2009), 2716–2723.
  • [16] Lj. Ciric, B. Samet, H. Aydi, C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput. 218 (2011), 2398–2406.
  • [17] M. Kikkawa, T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal. 69 (2008), 2942–2949.
  • [18] N. Mizoguchi, W. Takahashi, Fixed point theorems for multi-valued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), 177–188.
  • [19] P. Z. Daffer, H. Kaneko, Fixed points of generalized contractive multi-valued mappings, J. Math. Anal. Appl. 192(2) (1995), 655–666.
  • [20] S. B. Nadler, Mutivalued contraction mappings, Pacific. J. Math. 30 (1969), 475–488.
  • [21] S. G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. vol. 728, 1994, 183–197.
  • [22] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl. vol. 2010, Article ID 493298, 6 pages.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b580b90f-84a0-443c-81a5-a7cd497e438f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.