Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 37, no. 4 | 742--759
Tytuł artykułu

A retinal image authentication framework based on a graph-based representation algorithm in a two-stage matching structure

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Retinal vascular pattern has many valuable characteristics such as uniqueness, stability and permanence as a basis for human authentication in security applications. This paper presents an automatic rotation-invariant retinal authentication framework based on a novel graph-based retinal representation scheme. In the proposed framework, to replace the retinal image with a relational mathematical graph (RMG), we propose a novel RMG definition algorithm from the corresponding blood vessel pattern of the retinal image. Then, the unique features of RMG are extracted to supplement the authentication process in our framework. The authentication process is carried out in a two-stage matching structure. In the first stage of this scenario, the defined RMG of enquiry image is authenticated with enrolled RMGs in the database based on isomorphism theory. If the defined RMG of enquiry image is not isomorphic with none enrolled RMG in the database, in the second stage of our matching structure, the authentication is performed based on the extracted features from the defined RMG by a similarity-based matching scheme. The proposed graph-based authentication framework is evaluated on VARIA database and accuracy rate of 97.14% with false accept ratio of zero and false reject ratio of 2.85% are obtained. The experimental results show that the proposed authentication framework provides the rotation invariant, multi resolution and optimized features with low computational complexity for the retina-based authentication application.
Wydawca

Rocznik
Strony
742--759
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • Digital Processing and Machine Vision Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran; Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • Digital Processing and Machine Vision Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran; Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran, h_pourghasem@iaun.ac.ir
Bibliografia
  • [1] Shahbeig S, Pourghassem H. A fast and automatic algorithm for optic disc extraction in retinal images using PCA-based pre-processing and Curvelet transform. J Opt Soc Am A 2013;30(January (1)):13–21.
  • [2] Khakzar M, Pourghassem H. Human authentication algorithm using spectral feature of retinal fundus image. Int J Tomogr Simul 2015;28(3):23–38.
  • [3] Shahnazi M, Pahlevanzadeh M, Vafadoost M. Wavelet based retinal recognition. 9th International Symposium on Signal Processing and Its Applications (ISSPA). 2007. pp. 1–4.
  • [4] Miri MS, Mahloojifar A. Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction. IEEE Trans Biomed Eng 2011;58(5):1183–92.
  • [5] Khakzar M, Pourghassem H. A rotation invariant retina identification algorithm using tessellation-based spectral feature. 21st Iranian Conference on Biomedical Engineering (ICBME). 2014. pp. 309–14.
  • [6] Barkhoda W, Akhlaqian F, Deljavan Amiri M, Nouroozzadeh MS. Retina identification based on the pattern of blood vessels using fuzzy logic. EURASIP J Adv Signal Process 2011;(1):1–8.
  • [7] Lajevardi SM, Arathi A, Stephen D, Horadam KJ. Retina verification system based on biometric graph matching. IEEE Trans Image Process 2013;22(9):3625–35.
  • [8] Doaa Y, Solouma N, El-Dib A, Mabrouk M, Youssef AB. New feature-based detection of blood vessels and exudates in color fundus images. 2nd International Conference on Image Processing Theory Tools and Applications (IPTA). 2010. pp. 294–9.
  • [9] Dehghani A, Ghassabi Z, Moghddam HA, Moin MS. Human recognition based on retinal images and using new similarity function. EURASIP J Image Video Process 2013; (1):1–10.
  • [10] Ortega M, Penedo MG, Rouco J, Barreira N, Carreira MJ. Retinal verification using a feature points-based biometric pattern. EURASIP J Adv Signal Process. 2009. pp. 1–9.
  • [11] Calvo D, Ortega M, Penedo MG, Rouco J. Automatic detection and characterisation of retinal vessel tree bifurcations and crossovers in eye fundus images. Comput Methods Prog Biomed 2011;103(1):28–38.
  • [12] Farzin H, Moghaddam A, Moein MS. A novel retinal identification system. EURASIP J Adv Signal Process 2008; (1):1–10.
  • [13] Sukumaran S, Punithavalli M. Retina recognition based on fractal dimension. Int J Comput Sci Netw Secur 2009;9 (10):66–70.
  • [14] Muangnak N, Aimmanee P, Makhanov S, Uyyanonvara B. Vessel transform for automatic optic disk detection in retinal images. IET Image Process 2015;9(9):743–50.
  • [15] Arakala A, Davis SA, Horadam KJ. Retina features based on vessel graph substructures. International Joint Conference on Biometrics (IJCB). 2011. pp. 1–6.
  • [16] Drechsler K, Laura CO. Hierarchical decomposition of vessel skeletons for graph creation and feature extraction. IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2010. pp. 456–61.
  • [17] Deng K, Tian J, Zheng J, Zhang X, Dai X, Xu M. Retinal fundus image registration via vascular structure graph matching. J Biomed Imaging 2010;2010:1–13.
  • [18] Aguilar W, Yann F, Escolano F, Perez MEM, Romero AE, Lozano MA. A robust graph transformation matching for non-rigid registration. Image Vis Comput 2009;27(7):897–910.
  • [19] Bankhead P, Scholfield CN, McGeown JG, Curtis TM. Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS ONE 2012;7(3): e32435.
  • [20] Nazari P, Pourghassem H. A novel retina-based human identification algorithm based on geometrical shape features using a hierarchical matching structure. Comput Methods Prog Biomed 2017;141(April (4)):43–58.
  • [21] Welfer D, Scharcanski J, Marinho DR. A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Comput Med Imaging Graph 2010;34 (3):228–35.
  • [22] Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis 1988;1(4):321–31.
  • [23] João VB S, Leandro JJG, Cesar Jr RM, Jelinek HF, Cree MJ. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 2006;25(9):1214–22.
  • [24] Ricci E, Renzo P. Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 2007;26(10):1357–65.
  • [25] Boussion N, Rest CCL, Hatt M, Visvikis D. Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging. Eur J Nucl Med Mol Imaging 2009;36(7):1064–75.
  • [26] Eddie NYK, Acharya URJSS, Campilho CA. Image analysis and modeling in ophthalmology. CRC Press; 2014.
  • [27] Hoover A, Goldbaum M. the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 2003;22(8):951–8.
  • [28] Akita K, Kuga H. A computer method of understanding ocular fundus images. Pattern Recogn 1982;15(6):431–43.
  • [29] Jeribi A. ‘‘Spectral Graph Theory’’, International Publishing In Spectral Theory and Applications of Linear Operators and Block Operator Matrices. Springer; 2015. p. 413–39.
  • [30] Augeri Ch, Mullins BE, Baird LC, Bulutoglu DA, Baldwin RO. An algorithm for determining isomorphism using lexicographic sorting and the matrix inverse. Congressus Numerantium 2007;184:97–120.
  • [31] Godsil C, Royle GF. Algebraic graph theory. Springer Science & Business Media; 2013.
  • [32] Pereira T. Stability of synchronized motion in complex networks; 2011, arXiv: pp.1112.2297.
  • [33] Staal MJ, Niemeijer AM, Viergever M, Ginneken BV. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 2004;23 (4):501–9.
  • [34] Hoover A, Goldbaum M. Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 2003;22 (8):951–8.
  • [35] Ortega M, Marino C, Penedo MG, Blanco M, Gonzalez F. Biometric authentication using digital retinal images. 5th WSEAS International Conference on Applied Computer Science. 2006. pp. 422–7.
  • [36] Tabatabaee H, Milani Fard A, Jafariani H. A novel human identifier system using retina image and fuzzy clustering approach. 2nd IEEE International Conference on Information and Communication Technologies (ICTTA'06). 2006. pp. 1031–6.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b57d3dc7-d6d3-4215-842a-8bc4db91ff64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.