Warianty tytułu
Języki publikacji
Abstrakty
The paper reports on photoelectrical performance of the mid-wave infrared HgCdTe detector for high operating temperature condition. Detector structure was simulated with APSYS numerical platform by Crosslight Inc. The comprehensive analysis of the detector performance such as dark current, detectivity, time response vs. device architecture and applied bias has been performed. The N⁺pP⁺n⁺ HgCdTe heterostructure photodiode operating in room temperature at a wavelength range of 2.6–3.6 μm enabled to reach: detectivity ~ 8.7×10¹⁰ cmHz¹/²/W, responsivity ~ 1.72 A/W and time response ~ 145 ps(V = 200 mV).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
118-126
Opis fizyczny
Bibliogr. 32 poz., tab., wykr.
Twórcy
autor
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland, pmartyniuk@wat.edu.pl
autor
- Vigo System S.A., 129/133 Poznańska Str., 05-850 Ożarów Mazowiecki, Poland
autor
- Vigo System S.A., 129/133 Poznańska Str., 05-850 Ożarów Mazowiecki, Poland
autor
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
Bibliografia
- 1. M.H. Ettenberg and D. Malchow, “InGaAs SWIR detectors – from military to medical applications”, www.photonicson-line.com.
- 2. M.P. Hansen and D.S. Malchow, “Overwiew of SWIR detectors, cameras, and applications”, Proc. SPIE 6939, 693901 (2008).
- 3. A. Rogalski, Infrared Detectors, CRC Press, Boca Raton, 2011.
- 4. C. Rafferty, C. King, B. Ackland, J. O’Neil, I. Aberg, T.S. Sriram, A. Mackay, and R. Johnson, “Monolithic germanium SWIR imaging array”, Proc. SPIE 6940, 69400N (2008).
- 5. E. Heves, C. Oztruk, V. Ozguz, and Y. Gurbuz, “Solution-based PbS photodiodes, integrable on ROIC, for SWIR detector applications”, IEEE Electron Device Lett. 34, 5 (2013).
- 6. A. Rogalski and R. Ciupa, “InGaAs vs. HgCdTe for short wavelength infrared applications”, Proc. SPIE 3629, 0277–786X1 (1999).
- 7. J. Kaniewski and J. Piotrowski, “InGaAs for infrared photodetectors. Physics and technology”, Opto-Electron. Rev. 12, 139–148 (2004).
- 8. P. Norton, “HgCdTe infrared detectors”, Opto-Electron. Rev. 10, 159–174 (2002).
- 9. J.-S. Kim, S.-Y. An, S.-H. Suh, “Characteristics of SWIR diodes of HgCdTe/CdTe/GaAs grown by metal organic vapor phase epitaxy”, Phys. Stat. Sol. B229, 1089–1092 (2002).
- 10. A. Rogalski, “HgCdTe infrared detector material: history, status and outlook”, Rep. Prog. Phys. 68, 2267–2336 (2005).
- 11. L.O. Bubulac, W.E. Tennant, J.G. Pasko, L.J. Kozlowski, M. Zandian, M.E. Motamedi, R.E. DeWames, J. Bajaj, N. Nayar, W.V. McLevige, N.S. Gluck, R. Melendes, and D.E. Cooper, “High performance SWIR HgCdTe detector arrays”, J. Electron. Mater. 26, 649–655 (1997).
- 12. T. Ashley and C.T. Elliott, “Non-equilibrium mode of operation for infrared detection”, Electron. Lett. 21, 451–452 (1985).
- 13. C.T. Elliott, “Non-equilibrium mode of operation of narrow−gap semiconductor devices”, Semicond. Sci. Technol. 5, S30–S37 (1990).
- 14. J. Piotrowski and A. Rogalski, High-Operating Temperature Infrared Photodetectors , SPIE Press, Bellingham, 2007.
- 15. C. T. Elliot, C. T. Gordon, R. S. Hall, T. J. Philips, A. M. White, C. L. Jones, C. D. Maxey, N. E. Metcalfe, “Recent results on MOVPE grown heterostructure devices”, J. Electron. Mater. 25, 1139–1145 (1996).
- 16. J. Piotrowski, W. Gawron, Z. Orman, J. Pawluczyk, K. Kłos, D. Stępień, and A. Piotrowski, “Dark currents, responsivity and response time in graded gap HgCdTe structures”, Proc. SPIE 7660, 766031 (2010).
- 17. A. Piotrowski, P. Madejczyk, W. Gawron, K. Kłos, J. Pawluczyk, J. Rutkowski, J. Piotrowski, and A. Rogalski, “Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors”, Infrared Phys. & Technol. 49, 173–182 (2007).
- 18. R.K. Bhan and V. Dhar, “Carrier density approximation for non-parabolic and highly degenerate HgCdTe semiconductors”, Semicond. Sci. Technol. 19, 413–416 (2003).
- 19. S. Gupta, R.K. Bhan, and V. Dhar, “Unified carrier density approximation for non-parabolic and highly degenerate HgCdTe semiconductors covering SWIR, MWIR and LWIR bands”, Infrared Phys. & Technol. 51, 259–262 (2008).
- 20. Z.J. Quan, G.B. Chen, L.Z. Sun, Z.H. Ye, Z.F. Li, and W. Lu, “Effects of carrier degeneracy and conduction band non-parabolicity on the simulation of HgCdTe photovoltaic devices”, Infrared Phys. & Technol. 50, 1–8 (2007).
- 21. J. Wang, X.S. Chen, Z.Q. Wang, W.D. Hu, W. Lu, and F.Q. Xu, “The mechanism of the photoresponse blueshifts for then-type conversion region of n+on−p Hg0.722 Cd0.278 Te infrared photodiode”, J. Appl. Phys. 107, 044513 (2010).
- 22. J. Wang, X. Chen, W. Hu, L. Wang, Y. Chen, W. Lu, and F. Xu, “Different approximation for carrier statistic in non-parabolic MWIR HgCdTe photovoltaic devices”, Proc. SPIE 8012, 80123B (2011).
- 23. Z.J. Quan, X.S. Chen, W.D. Hu, Z.H. Ye, X.N. Hu, Z.F. Li, and W. Lu, “Modelling of dark characteristics for long-wavelength HgCdTe photodiode”, Opt. Quant Electron. 38, 1107–1113 (2007).
- 24. J. Wenus, J. Rutkowski, and A. Rogalski, “Two-dimensional analysis of double-layer heterojunction HgCdTe Photodiodes”, IEEE Trans. Electron. Devices 48, 7 (2001).
- 25. APSYS Macro/User’s Manual ver. 2011. Crosslight Software, Inc. (2011).
- 26. T.N. Casselman and P.E. Petersen, “A comparison of the dominant Auger transitions in p-type (HgCd)Te”, Solid State Commun. 33, 615–619 (1980).
- 27. G.A. Hurkx, D.B. M. Klaassen, and M.P.G. Knuvers, “A new recombination model for device simulation including tunnelling”, IEEE Trans. Electron. Devices 39, 2 (1992).
- 28. G.L. Hansen, J.L. Schmidt, and T.N. Casselman, “Energy gap vs. alloy composition and temperature in Hg1-xCdxTe”, J. Appl.Phys. 53, 7099 (1982).
- 29. W. Scott, “Electron mobility in Hg1-xCdxTe”, J. Appl. Phys. 43, 1055 (1972).
- 30. W.W. Anderson, “Absorption constant of Pb1-xSnxTe and Hg1-xCdxTe alloys”, Infrared Phys. & Technol. 20, 363(1980).
- 31. Q. Li and R.W. Dutton, “Numerical small-signal AC modeling of deep-level-trap related frequency-dependent output conductance and capacitance for GaAs MESFET’s on semi-insulating substrates”, IEEE Trans. Electron. Devices 38, 1285–1288 (1991).
- 32. E. Finkman and S.E. Schacham, “The exponential optical absorption band tail of Hg1-xCdxTe”, J. Appl. Phys. 56,10(1984).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b56d50fa-0017-4137-8946-a1f2a51a3e67