Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | Vol. 69, no. 2 | 547--559
Tytuł artykułu

Estimation of unsaturated hydraulic conductivity function: implication of low to high suction measurements

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Establishment of the relationship between soil suction and water content, commonly termed as soil–water characteristic curve (SWCC), is of prime importance in the feld of unsaturated soil mechanics. There are several instruments available that can be used to measure the SWCC of soil, but every suction measuring device has its own limitations in terms of its suction measurement range. Therefore, the preciseness of the estimated unsaturated soil properties largely depends on the range of suction measurements and the type of instruments used. The primary objective of this study is to quantify the error that can occur during the estimation of unsaturated hydraulic conductivity function (UHCF) from SWCC for low plastic soils. Experiments were performed to investigate the infuence of diferent suction measurement devices on the estimated UHCF for four diferent soils with varying clay content. A dew point potentiometer (WP4) and a miniature tensiometer (T5) have been used in this study for the suction measurement. The SWCC of the selected soils were predicted mathematically using a commonly used pedo-transfer function (PTF). The experimental results clearly indicated that the sole use of WP4 overestimated the SWCC parameters, as well as UHCF (overestimation in the conductivity value is in order of 104 times). Rather, a combination of T5 and WP4 data, within their accurate range, provides a more precise estimation of UHCF. Further, the accuracy of the PTF was found very efective for low plastic soils with a relatively low percentage of clay (% clay < 10), in the absence of any experimental data.
Wydawca

Czasopismo
Rocznik
Strony
547--559
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
  • Department of Civil Engineering, Indian Institute of Technology, Guwahati, Assam, Indi, abhisekh@iitg.ac.in
  • Department of Civil Engineering, Indian Institute of Technology, Guwahati, Assam, Indi, srees@iitg.ac.in
Bibliografia
  • 1. Abhijit D, Sreedeep S (2015) Evaluation of measurement methodologies used for establishing water retention characteristic curve of fly ash. J Test Eval 43(5):1066–1077. https://doi.org/10.1520/JTE20130091
  • 2. Agus SS, Schanz T (2005) Comparison of four methods for measuring total suction. Vadose Zone J 4(4):1087–1095. https://doi.org/10.2136/vzj2004.0133
  • 3. ASTM D2487 (2017) Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM Int, West Conshohocken, PA. https://doi.org/10.1520/D2487-17E01
  • 4. ASTM D422–63 (2007) Standard test method for particle-size analysis of soils. ASTM Int, West Conshohocken, PA. https://doi.org/10.1520/D0422-63R07E02
  • 5. ASTM D4318 (2017) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM Int, West Conshohocken, PA. https://doi.org/10.1520/D4318-17E01
  • 6. ASTM D5084 (2010) Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM Int, West Conshohocken, PA. https://doi.org/10.1520/D5084-10
  • 7. ASTM D6836 (2016) Standard test methods for determination of the soil water characteristic curve for desorption using hanging column, pressure extractor, chilled mirror hygrometer, or centrifuge. ASTM Int, West Conshohocken, PA. https://doi.org/10.1520/D6836-16
  • 8. ASTM D854 (2014) Standard test method for specific gravity of soil solids by water pycnometer. ASTM Int, West Conshohocken, PA. https://doi.org/10.1520/D0854-14
  • 9. Bordoloi S, Garg A, Sreedeep S, Lin P, Mei G (2018) Investigation of cracking and water availability of soil-biochar composite synthesized from invasive weed water hyacinth. Bioresour Tech 263:665–677. https://doi.org/10.1016/j.biortech.2018.05.011
  • 10. Bordoloi S, Yamsani SK, Garg A, Sekharan S (2019) Critical assessment of infiltration measurements for soils with varying fine content using a mini disk infiltrometer. J Test Eval 47(2):868–888. https://doi.org/10.1520/JTE20170328
  • 11. Cary CE, Zapata CE (2013) Unsaturated soil modeling for airfield pavement design. J Transp Eng 140(1):50–60. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000619
  • 12. Chetia M, Sekharan S (2016) Evaluation of different laboratory procedures for determining suction-water content relationship of cohesionless geomaterials. J Mater Civil Eng 28(2):04015123. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001399
  • 13. Cobos DR, Chambers C (2010) Calibrating ECH2O soil moisture sensors. Decagon Devices, Application note, pp 1–5
  • 14. Deka A, Sekharan S (2020) Water retention characteristics of fly ash-bentonite mix. Geotech Geol Eng 38:3245–3252. https://doi.org/10.1007/s10706-020-01220-w
  • 15. Esmaili D, Hatami K (2017) Comparative study of measured suction in fine-grained soil using different in-situ and laboratory techniques. Int J Geosynth Ground Eng 3(3):27. https://doi.org/10.1007/s40891-017-0104-8
  • 16. Fredlund DG, Houston SL (2013) Interpretation of soil-water characteristics curves when volume changes occurs as soil suction is changed. In: Caicedo et al (eds) Advances in unsaturated soils (pp 15–31) Taylor and Francis Group, London
  • 17. Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, New York
  • 18. Fredlund DG, Xing A (1994) Equations for the soil-water characteristic curve. Can Geotech J 31(4):521–532. https://doi.org/10.1139/t94-061
  • 19. Fredlund DG, Xing A, Huang S (1994) Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Can Geotech J 31(4):533–546. https://doi.org/10.1139/t94-062
  • 20. Fredlund MD, Fredlund DG, Wilson GW (1997) Prediction of the soil-water characteristic curve from grain-size distribution and volume-mass properties. In: Procedings of 3rd Brazilian Symp. on Unsaturated Soils, Rio de Janeiro, pp 13–23
  • 21. Fredlund MD, Wilson GW, Fredlund DG (2002) Use of the grain-size distribution for estimation of the soil-water characteristic curve. Can Geotech J 39(5):1103–1117. https://doi.org/10.1139/t02-049
  • 22. GmbH UMS (2001) T5 user manual. Munich, Germany
  • 23. Gopal P, Bordoloi S, Ratnam R et al (2019) Investigation of infiltration rate for soil-biochar composites of water hyacinth. Acta Geophys 67:231–246. https://doi.org/10.1007/s11600-018-0237-8
  • 24. Huang M, Fredlund DG, Fredlund MD (2010) Comparison of measured and PTF predictions of SWCCs for loess soils in China. Geotech Geol Eng 28(2):105–117. https://doi.org/10.1007/s10706-009-9284-x
  • 25. Leong EC, Tripathy S, Rahardjo H (2003) Total suction measurement of unsaturated soils with a device using the chilled-mirror dew-point technique. Geotechnique 53(2):173–182. https://doi.org/10.1680/geot.2003.53.2.173
  • 26. Li X, Wen H, Muhunthan B, Wang J (2015) Modeling and prediction of the effects of moisture on the unconfined compressive and tensile strength of soils. J Geotech Geoenviron Eng 141(7):04015028. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001308
  • 27. Li D, Gao G, Shao MA, Fu B (2016) Predicting available water of soil from particle-size distribution and bulk density in an oasis–desert transect in northwestern China. J Hydrol 538:539–550. https://doi.org/10.1016/j.jhydrol.2016.04.046
  • 28. Lu N, Likos WJ (2004) Unsaturated soil mechanics. John Wiley & Sons, New York
  • 29. Malaya C, Sreedeep S (2012a) Critical evaluation on the drying water retention characteristics of a class F Indian fly ash. J Mater Civil Eng 24(4):451–459. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000395
  • 30. Malaya C, Sreedeep S (2012b) Critical review on the parameters influencing soil-water characteristic curve. J Irrig Drain Eng 138(1):55–62. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000371
  • 31. Mbonimpa M, Aubertin M, Bussière B (2006) Predicting the unsaturated hydraulic conductivity of granular soils from basic geotechnical properties using the modified Kovacs (MK) model and statistical models. Can Geotech J 43(8):773–787. https://doi.org/10.1139/t06-044
  • 32. METER Group (2017a) 5TM ECH2O Water content and temperature sensor. METER Group Inc, Pullman, WA
  • 33. METER Group (2017b) WP4C Dew point potentiometer. METER Group Inc, Pullman, WA
  • 34. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522. https://doi.org/10.1029/WR012i003p00513
  • 35. Nam S, Gutierrez M, Diplas P, Petrie J, Wayllace A, Lu N, Muñoz JJ (2010) Comparison of testing techniques and models for establishing the SWCC of riverbank soils. Eng Geol 110(1–2):1–10. https://doi.org/10.1016/j.enggeo.2009.09.003
  • 36. Rahardjo H, Nong XF, Lee DTT, Leong EC, Fong YK (2018) Expedited soil–water characteristic curve tests using combined centrifuge and chilled mirror techniques. Geotech Test J 41(1):207–217. https://doi.org/10.1520/GTJ20160275
  • 37. Rao BH, Singh DN (2012) Establishing soil-water characteristic curve and determining unsaturated hydraulic conductivity of kaolin by ultracentrifugation and electrical measurements. Can Geotech J 49(12):1369–1377. https://doi.org/10.1139/cgj-2011-0341
  • 38. Saha A, Sekharan S, Manna U (2020) Evaluation of capacitance sensor for suction measurement in Silty Clay Loam. Geotech Geol Eng 38(4):4319–4331. https://doi.org/10.1007/s10706-020-01297-3
  • 39. Shaikh J, Yamsani SK, Sekharan S, Rakesh RR (2019) Performance evaluation of 5TM sensor for real-time monitoring of volumetric water content in landfill cover system. Adv Civil Eng Mater 8(1):322–335. https://doi.org/10.1520/ACEM20180091
  • 40. Simunek J, Van Genuchten MT, Sejna M (2005) The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Univ Calif-Riverside Res Rep 3:1–240
  • 41. Sreedeep S, Singh DN (2006) Nonlinear curve-fitting procedures for developing soil-water characteristic curves. Geotech Test J 29(5):409–418. https://doi.org/10.1520/GTJ14104
  • 42. Sreedeep S, Singh DN (2011) Critical review of the methodologies employed for soil suction measurement. Inter J Geomech 11(2):99–104. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000022
  • 43. Tariq A, Durnford DS (1993) Soil volumetric shrinkage measurements: a simple method. Soil Sci 155:325–330
  • 44. Thakur VKS, Sreedeep S, Singh DN (2005) Parameters affecting soil–water characteristic curves of fine-grained soils. J Geotech Geoenviron Eng 131(4):521–524. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(521)
  • 45. Thakur VKS, Sreedeep S, Singh DN (2006) Laboratory investigations on extremely high suction measurements for fine-grained soils. Geotech Geol Eng 24(3):565–578. https://doi.org/10.1007/s10706-005-1147-5
  • 46. UMS GmbH (2001) T5 user manual. Munich, Germany
  • 47. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Amer J 44(5):892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  • 48. van Genuchten MT, Leij FJ, Yates SR (1991) The RETC code for quantifying the hydraulic functions of unsaturated soils. Rep. No. EPA/600/2–91/065, U.S. Dept. of Agriculture, Agricultural Research Service, USSL, Riverside, CA
  • 49. Vanapalli SK, Fredlund DG, Pufahl DE, Clifton AW (1996) Model for the prediction of shear strength with respect to soil suction. Can Geotech J 33(3):379–392. https://doi.org/10.1139/t96-060
  • 50. Vanapalli SK, Fredlund DG, Pufahl DE (1999) The influence of soil structure and stress history on the soil–water characteristics of a compacted till. Geotechnique 49(2):143–159. https://doi.org/10.1680/geot.1999.49.2.143
  • 51. Wen H, Wang J, Wen VFW, Muhunthan B (2015) Soil-water characteristic curves for soils stabilized with class C fly ash. Transp Res Rec 2473(1):147–154. https://doi.org/10.3141/2473-17
  • 52. Yang H, Rahardjo H, Leong EC (2006) Behavior of unsaturated layered soil columns during infiltration. J Hydrol Eng 11(4):329–337. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:4(329)
  • 53. Yang WY, Li D, Sun T, Ni GH (2015) Saturation-excess and infiltration-excess runoff on green roofs. Ecol Eng 74:327–336. https://doi.org/10.1016/j.ecoleng.2014.10.023
  • 54. Zhao P, Shao M, Horton R (2011) Performance of soil particle-size distribution models for describing deposited soils adjacent to constructed dams in the China Loess Plateau. Acta Geophys 59:124–138. https://doi.org/10.2478/s11600-010-0037-2
  • 55. Zheng C, Lu Y, Guo X, Li H, Sai J, Liu X (2017) Application of HYDRUS-1D model for research on irrigation infiltration characteristics in arid oasis of northwest China. Environ Earth Sci 76(23):785. https://doi.org/10.1007/s12665-017-7151-2
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b56d0ef3-4425-496f-9dd5-2662b7cd2b83
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.