Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 1 | art. no. e56, 2022
Tytuł artykułu

A parametric analysis of free vibration and bending behavior of sandwich beam containing an open-cell metal foam core

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Free vibration and bending behavior of sandwich beams containing open-cell metal foam core are studied in the present work using zigzag theory. Hamilton’s principle and the principle of minimum potential energy are applied for determining the governing equations for free vibration and bending behavior, respectively. Three types of distribution of pores are used during the present study. The influence of the distribution of pores, end condition, thickness of the core, foam coefficients on beam behavior is studied in detail. The face sheets are assumed to be made up of the same material like foam. It was noticed that the nature of the distribution of pores and the end conditions widely determine the behavior of the beam.
Wydawca

Rocznik
Strony
art. no. e56, 2022
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Civil Engineering, National Institute of Technology Kurukshetra, Kurukshetra, Haryana 136119, India
  • Department of Civil Engineering, National Institute of Technology Kurukshetra, Kurukshetra, Haryana 136119, India
  • Laboratoire de Génie Energétique Et Matériaux, LGEM, Université de Biskra, B.P. 145, R.P. 07000 Biskra, Algeria
  • Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia, zenkour@kau.edu.sa
  • Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
Bibliografia
  • 1. Barati MR, Zenkour AM. Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions. Mech Adv Mater Struct. 2019;26:1580–8. https://doi.org/10.1080/15376494.2018.1444235.
  • 2. Jain D, Zhao YQ, Batra RC. Analysis of three-dimensional bending deformations and failure of wet and dry laminates. Compos Struct. 2020;252:112687. https://doi.org/10.1016/j.compstruct.2020.112687.
  • 3. Belarbi M, Khechai A, Bessaim A, Houari M, Garg A, Hirane H, Chalak HD. Finite element bending analysis of symmetric and non-symmetric functionally graded sandwich beams using a novel parabolic shear deformation theory. Proc Inst Mech Eng Part L J Mater Des Appl. 2021;235(11):2482–504. https://doi.org/10.1177/14644207211005096.
  • 4. Simone AE, Gibson LJ. Efficient structural components using porous metals. Mater Sci Eng A. 1997;229:55–62. https://doi.org/10.1016/S0921-5093(96)10842-X.
  • 5. Pollien A, Conde Y, Pambaguian L, Mortensen A. Graded opencell aluminium foam core sandwich beams. Mater Sci Eng A. 2005;404:9–18. https://doi.org/10.1016/j.msea.2005.05.096.
  • 6. Ashby MF, Evans T, Fleck NA, Hutchinson JW, Wadley HNG, Gibson LJ. Metal foams: a design guide. Boston: Butterworth-Heinemann; 2000.
  • 7. Hohe J. Stochastic homogenization of polymeric foams, sandwich structures 7: advancing with sandwich structures and materials.Heidelberg: Springer; 2005. p. 925–6.
  • 8. Kesler O, Gibson LJ. Size effects in metallic foam core sandwich beams. Mater Sci Eng A. 2002;326(2):228–34. https://doi.org/10.1016/S0921-5093(01)01487-3.
  • 9. Howson WP, Zare A. Exact dynamic stiffness matrix for flexural vibration of three-layered sandwich beams. J Sound Vib. 2005;282:753–67. https://doi.org/10.1016/j.jsv.2004.03.045.
  • 10. Li Q, Wu D, Chen X, Liu L, Yu Y, Gao W. Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation. Int J Mech Sci. 2018;148:596–610. https://doi.org/10.1016/j.ijmecsci.2018.09.020.
  • 11. Zenkour AM, Mashat DS, Alghanmi RA. Hygrothermal analysis of antisymmetric cross-ply laminates using a refined plate theory. Int J Mech Mater Des. 2014;10:213–26. https://doi.org/10.1007/s10999-014-9242-5.
  • 12. Magnucka-Blandzi E. Dynamic stability and static stress state of a sandwich beam with a metal foam core using three modified timoshenko hypotheses. Mech Adv Mater Struct. 2011;18:147–58. https://doi.org/10.1080/15376494.2010.496065.
  • 13. Chen D, Yang J, Kitipornchai S. Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos Struct. 2015;133:54–61. https://doi.org/10.1016/j.compstruct. 2015.07.052.
  • 14. Chen D, Yang J, Kitipornchai S. Free and forced vibrations of shear deformable functionally graded porous beams. Int J Mech Sci. 2016;108–109:14–22. https:// doi. org/ 10. 1016/j. ijmec sci.2016.01.025.
  • 15. Chen D, Yang J, Kitipornchai S. Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method. Arch Civ Mech Eng. 2019;19:157–70. https://doi.org/10.1016/j.acme.2018.09.004.
  • 16. Yang J, Chen D, Kitipornchai S. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos Struct. 2018;193:281–94. https://doi.org/10.1016/j.compstruct.2018.03.090.
  • 17. Kitipornchai S, Chen D, Yang J. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater Des. 2017;116:656–65. https://doi.org/10.1016/j.matdes.2016.12.061.
  • 18. Wang YQ, Zhao HL. Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method. Arch Appl Mech. 2019;89:2335–49. https://doi.org/10.1007/s00419-019-01579-0.
  • 19. Bamdad M, Mohammadimehr M, Alambeigi K. Analysis of sandwich Timoshenko porous beam with temperature-dependent material properties: magneto-electro-elastic vibration and buckling solution. J Vib Control. 2019;25:2875–93. https://doi.org/10.1177/1077546319860314.
  • 20. Zenkour AM. A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities. Compos Struct. 2018;201:38–48. https:// doi. org/ 10. 1016/j. compstruct. 2018.05.147.
  • 21. Misiurek K, Śniady P. Vibrations of sandwich beam due to a moving force. Compos Struct. 2013;104:85–93. https://doi.org/10.1016/j.compstruct.2013.04.007.
  • 22. Wattanasakulpong N, Chaikittiratana A, Pornpeerakeat S. Chebyshev collocation approach for vibration analysis of functionally graded porous beams based on third-order shear deformation theory. Acta Mech Sin Xuebao. 2018;34:1124–35. https://doi.org/10.1007/s10409-018-0770-3.
  • 23. Wang Y, Zhou A, Fu T, Zhang W. Transient response of a sandwich beam with functionally graded porous core traversed by a non-uniformly distributed moving mass. Int J Mech Mater Des. 2020;16:519–40. https://doi.org/10.1007/s10999-019-09483-9.
  • 24. Chinh TH, Tu TM, Duc DM, Hung TQ. Static flexural analysis of sandwich beam with functionally graded face sheets and porous core via point interpolation meshfree method based on polynomial basic function. Arch Appl Mech. 2021;91:933–47. https://doi.org/10.1007/s00419-020-01797-x.
  • 25. Dat ND, Van TN, MinhAnh V, Duc ND. Vibration and nonlinear dynamic analysis of sandwich FG-CNTRC plate with porous core layer. Mech Adv Mater Struct. 2020. https://doi.org/10.1080/15376494.2020.1822476.
  • 26. Ebrahimi F, Dabbagh A, Taheri M. Vibration analysis of porous metal foam plates rested on viscoelastic substrate. Eng Comput. 2020. https://doi.org/10.1007/s00366-020-01031-w.
  • 27. Shahedi S, Mohammadimehr M. Vibration analysis of rotating fully-bonded and delaminated sandwich beam with CNTRC face sheets and AL-foam flexible core in thermal and moisture environments. Mech Based Des Struct Mach. 2020;48:584–614. https://doi.org/10.1080/15397734.2019.1646661.
  • 28. Yaghoobi H, Taheri F. Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets. Compos Struct. 2020;252: 112700. https://doi.org/10.1016/j.compstruct. 2020.112700.
  • 29. Chalak HD, Chakrabarti A, Iqbal MA, Sheikh AH. Vibration of laminated sandwich beams having soft core. J Vib Control. 2012;18:1422–35. https://doi.org/10.1177/1077546311421947.
  • 30. Loja MAR. Dynamic response of soft core sandwich beams with metal-graphene nanocomposite skins. Shock Vib. 2017;78413:16. https://doi.org/10.1155/2017/7842413.
  • 31. Neves AMA, Ferreira AJM, Carrera E, Cinefra M, Jorge RMN, Soares CMM. Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping effects. Adv Eng Softw. 2012;52:30–43. https://doi.org/10.1016/j.advengsoft.2012.05.005.
  • 32. Garg A, Chalak HD. Analysis of non-skew and skew laminated composite and sandwich plates under hygro-thermo-mechanical conditions including transverse stress variations. J Sandw Struct Mater. 2021;23(8):3471–94. https://doi.org/10.1177/1099636220932782.
  • 33. Di Sciuva M, Sorrenti M. Bending and free vibration analysis of functionally graded sandwich plates: an assessment of the refined Zigzag theory. J Sandw Struct Mater. 2021;23(3):760–802. https://doi.org/10.1177/1099636219843970.
  • 34. Swaminathan K, Naveenkumar DT, Zenkour AM, Carrera E. Stress, vibration and buckling analyses of FGM plates—a state-of-the-art review. Compos Struct. 2015;120:10–31. https://doi.org/10.1016/j.compstruct.2014.09.070.
  • 35. Carrera E. Historical review of Zig-Zag theories for multilayered plates and shells. Appl Mech Rev. 2003;56:287–308. https://doi.org/10.1115/1.1557614.
  • 36. Noor AK, Burton WS. Assessment of computational models for multilayered composite shells. Appl Mech Rev. 1990;43:67–97. https://doi.org/10.1115/1.3119162.
  • 37. Reddy JN. On refined computational models of composite laminates. Int J Numer Methods Eng. 1989;27:361–82. https://doi.org/10.1002/nme.1620270210.
  • 38. Sayyad AS, Ghugal YM. Bending, buckling and free vibration of laminated composite and sandwich beams: a critical review of literature. Compos Struct. 2017;171:486–504. https://doi.org/10.1016/j.compstruct.2017.03.053.
  • 39. Liew KM, Pan ZZ, Zhang LW. An overview of layerwise theories for composite laminates and structures: development, numerical implementation and application. Compos Struct. 2019;216:240–59. https://doi.org/10.1016/j.compstruct.2019.02.074.
  • 40. Garg A, Chalak HD, Belarbi MO, Zenkour AM, Sahoo R. Estimation of carbon nanotubes and their applications as reinforcing composite materials–an engineering review. Compos Struct. 2021;272: 114234. https:// doi. org/ 10. 1016/j. comps truct. 2021.114234.
  • 41. Garg A, Chalak HD, Zenkour AM, Belarbi MO, Houari MSA. A review of available theories and methodologies for the analysis of nano isotropic, nano functionally graded, and CNT reinforced nanocomposite structures. Arch Comput Methods Eng. 2021. https://doi.org/10.1007/s11831-021-09652-0.
  • 42. Corr RB, Jennings A. A simultaneous iteration algorithm for symmetric eigenvalue problems. Int J Numer Meth Engg. 1976;10:647–63. https://doi.org/10.1002/nme.1620100313.
  • 43. Gibson IJ, Ashby MF. The mechanics of three-dimensional cellular materials. Proc R Soc London A Math Phys Sci. 1982;382:43–59. https://doi.org/10.1098/rspa.1982.0088.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b5163369-9114-48c1-9dee-41b815613a73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.