Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 20, no. 2 | 112--123
Tytuł artykułu

Low-velocity impact performance of UHMWPE composites consolidated with carbide particles

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultra-high molecular weight polyethylene (UHMWPE) is one of important materials utilized against impacting threats. In this work, bulk UHMWPE specimens were fabricated in a compression molding chamber, and molding parameters such as pressure and temperature were varied in the specimen preparation stage to investigate the effect of molding parameters on the impact performance. In addition, silicon carbide fillers were included in the UHMWPE matrix to enhance the anti-impact properties of the specimens. From the results, high molding pressure provides enhanced impact resistance due to improved microstructural consolidation. On the other hand, molding temperature just above the melting point of polymer is much beneficial to the anti-impact behavior of the structures. Carbide fillers lead to an increase in the frictional interaction between the impactor and composites and thereby enhancing the impact resistance of the structures. However, the gain in the protective properties performance is restricted up to a certain amount of carbide loading because at higher filler ratios, the composites change from ductile to brittle characteristics. For this reason, crack growth susceptibility develops in the composites at excessive carbide loadings.
Wydawca

Rocznik
Strony
112--123
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
Bibliografia
  • [1] Huang A, Su R, Liu Y. Effects of a coupling agent on the mechanical and thermal properties of ultrahigh molecular weight polyethylene/nano silicon carbide composites. J Appl Polym Sci. 2013;129(3):1218–22. https ://doi.org/10.1002/app.38743 .
  • [2] Gürgen S. Wear performance of UHMWPE based composites including nano-sized fumed silica. Compos B Eng. 2019;173:106967. https ://doi.org/10.1016/j.compo sites b.2019.10696 7.
  • [3] Black J, Hastings G, editors. Handbook of biomaterial properties. 1st ed. London: Chapman & Hall; 1998.
  • [4] Gürgen S, Kuşhan MC. High performance fabrics in body protective systems. Mater Sci Forum. 2016;880:132–5. https ://doi.org/10.4028/www.scien tific .net/MSF.880.132.
  • [5] Zhang D, Sun Y, Chen L, Pan N. A comparative study on low-velocity impact response of fabric composite laminates. Mater Des. 2013;50:750–6. https ://doi.org/10.1016/j.matdes.2013.03.044.
  • [6] Lässig T, et al. Investigations on the spall and delamination behavior of UHMWPE composites. Compos Struct. 2017;182:590–7. https ://doi.org/10.1016/j.comps truct .2017.09.031.
  • [7] Arora S, Majumdar A, Butola BS. Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics. Compos Struct. 2019;210:41–8. https ://doi.org/10.1016/j.comps truct .2018.11.028.
  • [8] Zulkifli F, Stolk J, Heisserer U, Yong AT-M, Li Z, Hu XM. Strategic positioning of carbon fiber layers in an UHMwPE ballistic hybrid composite panel. Int J Impact Eng. 2019;129:119–27. https://doi.org/10.1016/j.ijimp eng.2019.02.005.
  • [9] Chouhan H, Asija N, Ahmed A, Kartikeya C, Bhatnagar N. Effect of moisture on high strain rate performance of UHMWPE fiber based composite. Procedia Struct Integr. 2019;14:830–8. https ://doi.org/10.1016/j.prost r.2019.07.061.
  • [10] Yang Y, Chen X. Investigation of failure modes and influence on ballistic performance of ultra-high molecular weight polyethylene (UHMWPE) uni-directional laminate for hybrid design. Campos Struct. 2017;174:233–43. https ://doi.org/10.1016/j.comps truct.2017.04.033.
  • [11] Panin SV, et al. Wear resistance of composites based on hybrid UHMWPE–PTFE matrix: mechanical and tribotechnical properties of the matrix. J Frict Wear. 2015;36(3):249–56. https ://doi.org/10.3103/S1068 36661 50301 13.
  • [12] Gürgen S, Çelik ON, Kuşhan MC. Tribological behavior of UHMWPE matrix composites reinforced with PTFE particles and aramid fibers. Compos B Eng. 2019;173:106949. https ://doi.org/10.1016/j.compo sites b.2019.10694 9.
  • [13] Gürgen S, Kuşhan MC, Li W. Shear thickening fluids in protective applications: a review. Prog Polym Sci. 2017;75:48–72. https ://doi.org/10.1016/j.progp olyms ci.2017.07.003.
  • [14] Gürgen S, Majumdar A. Tuning the frictional properties of carbon fabrics using boron carbide particles. Fibers Polym. 2019;20(4):725–31. https ://doi.org/10.1007/s1222 1-019-8493-z.
  • [15] Krishnan K, Sockalingam S, Bansal S, Rajan SD. Numerical simulation of ceramic composite armor subjected to ballistic impact. Compos B Eng. 2010;41(8):583–93. https ://doi.org/10.1016/j.compo sites b.2010.10.001.
  • [16] Shen Z, Hu D, Yang G, Han X. Ballistic reliability study on SiC/UHMWPE composite armor against armor-piercing bullet. Campos Struct. 2019;213:209–19. https ://doi.org/10.1016/j.comps truct.2019.01.078.
  • [17] Gürgen S. An investigation on composite laminates including shear thickening fluid under stab condition. J Compos Mater. 2019;53(8):1111–22. https ://doi.org/10.1177/00219 98318 79615 8.
  • [18] Gürgen S, Kuşhan MC. The stab resistance of fabrics impregnatem with shear thickening fluids including various particle size of additives. Compos Part Appl Sci Manuf. 2017;94:50–60. https://doi.org/10.1016/j.compo sites a.2016.12.019.
  • [19] Gürgen S, Kuşhan MC. The effect of silicon carbide additives on the stab resistance of shear thickening fluid treated fabrics. Mech Adv Mater Struct. 2017;24(16):1381–90. https ://doi.org/10.1080/15376 494.2016.12313 55.
  • [20] Ge S, et al. Friction and wear behavior of nitrogen ion implanted UHMWPE against ZrO2 ceramic. Wear. 2003;255(7–12):1069–75. https ://doi.org/10.1016/S0043 -1648(03)00269 -2.
  • [21] Gao P, Mackley MR. The structure and rheology of molten ultrahigh-molecular-mass polyethylene. Polymer. 1994;35(24):5210–6. https ://doi.org/10.1016/0032-3861(94)90471 -5.
  • [22] Wu JJ, Buckley CP, O’Connor JJ. Mechanical integrity of compression-moulded ultra-high molecular weight polyethylene: effects of varying process conditions. Biomaterials. 2002;23(17):3773–83. https ://doi.org/10.1016/S0142-9612(02)00117 -5.
  • [23] Parasnis NC, Ramani K. Analysis of the effect of pressure on compression moulding of UHMWPE. J Mater Sci - Mater Med. 1998;9(3):165–72. https ://doi.org/10.1023/A:10088 71720 389.
  • [24] Mohagheghian I, McShane GJ, Stronge WJ. Impact perforation of monolithic polyethylene plates: projectile nose shape dependence. Int J Impact Eng. 2015;80:162–76. https ://doi.org/10.1016/j.ijimp eng.2015.02.002.
  • [25] Mourad A-HI, Fouad H, Elleithy R. Impact of some environmental conditions on the tensile, creep-recovery, relaxation, melting and crystallinity behaviour of UHMWPE-GUR 410-medical grade. Mater Des. 2009;30(10):4112–9. https ://doi.org/10.1016/j.matde s.2009.05.001.
  • [26] Oral E, Ghali BW, Rowell SL, Micheli BR, Lozynsky AJ, Muratoglu OK. A surface crosslinked UHMWPE stabilized by vitamin E with low wear and high fatigue strength. Biomaterials. 2010;31(27):7051–60. https ://doi.org/10.1016/j.bioma teria ls.2010.05.041.
  • [27] KanagaKaruppiah KS, et al. Friction and wear behavior of ultrahigh molecular weight polyethylene as a function of polymer crystallinity. Acta Biomater. 2008;4(5):1401–10. https ://doi.org/10.1016/j.actbi o.2008.02.022.
  • [28] Alderson KL, Evans KE. The fabrication of microporous polyethylene having a negative Poisson’s ratio. Polymer. 1992;33(20):4435–8. https ://doi.org/10.1016/0032-3861(92)90294 -7.
  • [29] Gürgen S, Kuşhan MC. The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym Test. 2017;64:296–306. https ://doi.org/10.1016/j.polymertes ting.2017.11.003.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b4ba0a13-2c06-4235-a89c-1f83dd650014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.