Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 38, no. 2 | 262--274
Tytuł artykułu

Nonsubsampled shearlet domain fusion techniques for CT–MR neurological images using improved biological inspired neural model

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fusion of multimodality medical images performs a very crucial role in the clinical diagnosis, analysis and the treatment of especially in critical diseases. It is considered as an assisted approach for the radiologist by providing the composite images having significant diagnostic information acquired from the source images. The main purpose of this work is to develop an efficient framework for fusing the multimodal medical images. Three different fusion techniques are proposed in this paper that presents the CT and MR medical image fusion in nonsubsampled shearlet transform (NSST) domain using the adaptive spiking neural model. The NSST having different features and a competent depiction of the image coefficients provides several directional decomposition coefficients. Maximum selection approach and regional energy are utilized for low frequency coefficients fusion. Spatial frequency, novel modified spatial frequency and novel sum modified Laplacian motivated spiking model are used for every high frequency subimage component. Finally, fused images are reconstructed by applying inverse NSST. The performance of proposed fusion techni-ques is validated by extensive simulations performed on different CT-MR image datasets using proposed and other thirty seven existing fusion approaches in terms of both the subjective and objective manner. The results revealed that the proposed techniques provide better visualization of resultant images and higher quantitative measures compared to several existing fusion approaches.
Wydawca

Rocznik
Strony
262--274
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
autor
Bibliografia
  • [1] Li S, Kang X, Fang L, Hu J, Yin H. Pixel-level image fusion: a survey of the state of the art. Inf Fusion 2017;33:100–12.
  • [2] Huang W, Jing Z. Evaluation of focus measures in multi- focus image fusion. Pattern Recogn Lett 2007;28:493–500.
  • [3] Wang Z, Ma Y. Medical image fusion using m-PCNN. Inf Fusion 2008;9:176–85.
  • [4] Li M, Cai W, Tan Z. A region-based multi-sensor image fusion scheme using pulse-coupled neural network. Pattern Recogn Lett 2006;27:1948–56.
  • [5] Wan T, Zhu C, Qin Z. Multifocus image fusion based on robust principal component analysis. Pattern Recogn Lett 2013;34:1001–8.
  • [6] Bhat M, Karki MV. Feature selection based on PCA and PSO for multimodal medical image fusion using DTCWT. ArXiv:170108918. 2017.
  • [7] Pajares G, Manuel de la Cruz J. A wavelet-based image fusion tutorial. Pattern Recogn 2004;37:1855–72.
  • [8] Chavan SS, Mahajan A, Talbar SN, Desai S, Thakur M, D'Cruz A. Nonsubsampled rotated complex wavelet transform (NSRCxWT) for medical image fusion related to clinical aspects in neurocysticercosis. Comput Biol Med 2017;81:64–78.
  • [9] Do MN, Vetterli M. The finite ridgelet transform for image representation. IEEE Trans Image Process 2003;12:16–28.
  • [10] Starck JL, Candes EJ, Donoho DL. The curvelet transform for image denoising. IEEE Trans Image Process 2002;11:670–84.
  • [11] Li S, Yang B. Multifocus image fusion by combining curvelet and wavelet transform. Pattern Recogn Lett 2008;29:1295–301.
  • [12] Richa S, Om P, Ashish K. Local energy-based multimodal medical image fusion in curvelet domain. IET Comput Vis 2016;10:513–27.
  • [13] Yang S, Wang M, Jiao L, Wu R, Wang Z. Image fusion based on a new contourlet packet. Inf Fusion 2010;11:78–84.
  • [14] Bhateja V, Patel H, Krishn A, Sahu A, Lay-Ekuakille A. Multimodal medical image sensor fusion framework using cascade of wavelet and contourlet transform domains. IEEE Sens J 2015;15:6783–90.
  • [15] Ganasala P, Kumar V. CT and MR image fusion scheme in nonsubsampled contourlet transform domain. J Digit Imaging 2014;1–12.
  • [16] Kong W, Lei Y. Technique for image fusion between gray-scale visual light and infrared images based on NSST and improved RF. Optik 2013;124:6423–31.
  • [17] Yang B, Li S, Sun F. Image fusion using nonsubsampled contourlet transform. Proceedings: IEEE fourth international conference on image and graphics; 2007. p. 719–24.
  • [18] Kong W, Liu J. Technique for image fusion based on NSST domain improved fast non-classical RF. Infrared Phys Technol 2013;61:27–36.
  • [19] Ganasala P, Kumar V. Feature-motivated simplified adaptive PCNN-based medical image fusion algorithm in NSST domain. J Digit Imaging 2016;29:73–85.
  • [20] Kavitha C, Chellamuthu C, Rajesh R. Medical image fusion using combined discrete wavelet and ripplet transforms. Procedia Eng 2012;38:813–20.
  • [21] Deepika MM, Vaithyanathan V. An efficient method to improve the spatial property of medical images. J Theor Appl Inf Technol 2012;35:141–8. Deep GuptaIntegrative Medicine Research, 38 (2018) 262-274. doi:10.1016/j.bbe.2017.12.005.
  • 22] Xia J-x, Duan X-h, Wei S-c. Application of adaptive PCNN based on neighborhood to medical image fusion. Appl Res Comput 2011;10:3929–33.
  • [23] Yang Y, Que Y, Huang S-Y, Lin P. Technique for multi-focus image fusion based on fuzzy-adaptive pulse-coupled neural network. SiVP 2017;11:439–46.
  • [24] Guorong G, Luping X, Dongzhu F. Multi-focus image fusion based on non-subsampled shearlet transform. IET Image Process 2013;7:633–9.
  • [25] Liu X, Mei W, Du H. Multimodality medical image fusion algorithm based on gradient minimization smoothing filter and pulse coupled neural network. Biomed Signal Process Control 2016;30:140–8.
  • [26] Xu X, Shan D, Wang G, Jiang X. Multimodal medical image fusion using PCNN optimized by the QPSO algorithm. Appl Soft Comput 2016;46:588–95.
  • [27] Agrawal D, Singhai J. Multifocus image fusion using modified pulse coupled neural network for improved image quality. IET Image Process 2010;4:443–51.
  • [28] El-taweel GS, Helmy AK. Image fusion scheme based on modified dual pulse coupled neural network. IET Image Process 2013;7:407–14.
  • [29] Monica Subashini M, Sahoo SK. Pulse coupled neural networks and its applications. Expert Syst Appl 2014;41:3965–74.
  • [30] Das S, Kundu M. NSCT-based multimodal medical image fusion using pulse-coupled neural network and modified spatial frequency. Med Biol Eng Comput 2012;50:1105–14.
  • [31] Xydeas CS, Petrovic V. Objective image fusion performance measure. Electron Lett 2000;36:308–9.
  • [32] Hua T, Ya-nan F, Pei-Guang W. Image fusion algorithm based on regional variance and multi-wavelet bases. 2nd international conference on future computer and communication. 2010. pp. 792–5.
  • [33] Yang Y, Park DS, Huang S, Rao N. Medical image fusion via an effective wavelet-based approach. EURASIP J Adv Signal Process 2010;2010:44.
  • [34] Wang L, Li B, Tian L-F. Multi-modal medical image fusion using the inter-scale and intra-scale dependencies between image shift-invariant shearlet coefficients. Inf Fusion 2012;19:20–8.
  • [35] Xu Z. Medical image fusion using multi-level local extrema. Inf Fusion 2014;19:38–48.
  • [36] Yang L, Guo B, Ni W. Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform. Neurocomputing 2008;72:203–11.
  • [37] Singh R, Khare A. Fusion of multimodal medical images using Daubechies complex wavelet transform – a multiresolution approach. Inf Fusion 2014;19:49–60.
  • [38] Singh R, Vatsa M, Noore A. Multimodal medical image fusion using redundant wavelet transform. Seventh international conference on advances in pattern recognition. 2009. pp. 232–5.
  • [39] Li S, Yang B, Hu J. Performance comparison of different multi-resolution transforms for image fusion. Inf Fusion 2011;12:74–84.
  • [40] Li H, Manjunath BS, Mitra SK. Multisensor image fusion using the wavelet transform. Graph Models Image Process 1995;57:235–45.
  • [41] Miao Q-g, Shi C, Xu P-f, Yang M, Shi Y-b. A novel algorithm of image fusion using shearlets. Opt Commun 2011;284:1540–7.
  • [42] Qu X-B, Yan J-W, Xiao H-Z, Zhu Z-Q. Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain. Acta Autom Sinica 2008;34:1508–14.
  • [43] Singh S, Gupta D, Anand RS, Kumar V. Nonsubsampled shearlet based CT and MR medical image fusion using Deep GuptaIntegrative Medicine Research, 38 (2018) 262-274. doi:10.1016/j.bbe.2017.12.005biologically inspired spiking neural network. Biomed Signal Process Control 2015;18:91–101.
  • [44] Wang G, Xu X, Jiang X, Nie R. A modified model of pulse coupled neural networks with adaptive parameters and its application on image fusion. ICIC Express Lett 2015;6:2523–30.
  • [45] Wang N, Ma Y, Zhan K, Yuan M. Multimodal medical image fusion framework based on simplified PCNN in nonsubsampled contourlet transform domain. J Multimedia 2013;8:270–6.
  • [46] Bhatnagar G, Wu QMJ, Liu Z. A new contrast based multimodal medical image fusion framework. Neurocomputing 2015;157:143–52.
  • [47] Tian J, Chen L, Ma L, Yu W. Multi-focus image fusion using a bilateral gradient-based sharpness criterion. Opt Commun 2011;284:80–7.
  • [48] Gao C, Zhou D, Guo Y. Automatic iterative algorithm for image segmentation using a modified pulse-coupled neural network. Neurocomputing 2013;119:332–8.
  • [49] Deng A, Wu J, Yang S. An image fusion algorithm based on discrete wavelet transform and canny operator. In: Lin S, Huang X, editors. International conference on advanced research on computer education, simulation and modeling. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 32–8. Deep GuptaIntegrative Medicine Research, 38 (2018) 262-274. doi:10.1016/j.bbe.2017.12.005.
  • 50] Lewis JJ, Callaghan RJ, Nikolov SG, Bull DR, Canagarajah N. Pixel- and region-based image fusion with complex wavelets. Inf Fusion 2007;8:119–30.
  • [51] Xiao X, Wu Z. Image fusion based on lifting wavelet transform. International symposium on intelligence information processing and trusted computing. 2010. pp. 659–62.
  • [52] Wang H-h. A new multiwavelet-based approach to image fusion. J Math Imaging Vis 2004;21:177–92.
  • [53] Dong L, Yang Q, Wu H, Xiao H, Xu M. High quality multi-spectral and panchromatic image fusion technologies based on curvelet transform. Neurocomputing 2015;159:268–74.
  • [54] Tang L, Zhao F, Zhao Z-G. The nonsubsampled contourlet transform for image fusion. International conference on wavelet analysis and pattern recognition. 2007. pp. 305–10.
  • [55] Yang B, Li S. Multifocus image fusion and restoration with sparse representation. IEEE Trans Inst Meas 2010;59:884–92.
  • [56] Yin H, Li S. Multimodal image fusion with joint sparsity model. Opt Eng 2011;50. 067007–10.
  • [57] Yang B, Li S. Visual attention guided image fusion with sparse representation. Optik 2014;125:4881–8.
  • [58] Gao Z, Zhang C. Texture clear multi-modal image fusion with joint sparsity model. Optik 2017;130:255–65.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b4944593-d93e-4ecd-b60a-459e99bd7cd0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.