Warianty tytułu
Języki publikacji
Abstrakty
Using the theory of elasticity and the main provisions of the quasi-static-wave hypothesis of the mechanism of the destruction of a solid medium under the action of an explosion, analytical modelling of the parameters of the formation of crumpling zones and crushing of the rock mass around the charging cavity during its explosive loading was carried out. Analytical models of the radii of the crumpling, intensive fragmentation and fracturing zones formed around the charging cavity in the rock mass during its explosive loading, taking into account the pressure of the explosion products, the limit of tensile-compressive strength of the rocks, their structural composition, fracturing and compaction under the action of rock pressure, were developed. Based on the change in the stress-strain state of the rock mass under the action of the explosion, numerical modelling of the radii of the zones of crumpling, intensive fragmentation and fracturing was performed using the finite element method. According to the simulation results, the power dependence of the change in the radii of the crumpling and fragmentation zones of the rock mass was determined depending on the diameter of the charging cavity, the pressure of the explosion products, and the limit of rock compressive strength. By comparing the results of analytical and numerical modelling for rigid boundary conditions of a homogeneous non-cracked rock mass, the difference in the values of the radii of the defined zones was established as being 4, 8 and 6%, respectively. The resulting analytical models of the radii of crushing zones, intensive fragmentation and fracturing increase the accuracy of estimating the parameters of rock mass destruction by explosion by up to 50% and improve the parameters of drilling and blasting operations when carrying out mining operations, special purpose cavities and rocking of the rock mass.
Czasopismo
Rocznik
Tom
Strony
240--247
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
- Dnipro University of Technology, Department of Transport Systems and Energy-Mechanical Complexes, Yavornytskoho Ave 19, UA- 49005, Dnipro, Ukraine
autor
- Dnipro University of Technology, Department of Mining Engineering and Education, Yavornytskoho Ave 19, UA-49005, Dnipro, Ukraine
autor
- Dnipro University of Technology, Department of Hydrogeology and Engineering Geology, D. Yavornytskoho Ave 19, 49005, Dnipro, Ukraine
autor
- Dnipro University of Technology, Department of Construction, Geotechnics and Geomechanics, D. Yavornytskoho Ave 19, 49005, Dnipro, Ukraine
autor
- AGH University of Science and Technology, Faculty of Management, al. Mickiewicza 30, Krakow, 30059, Poland f Central Mining Institute, Plac Gwarkow 1, 40-166, Katowice, Poland
autor
- Spolka Restrukturyzacji Kopaln S.A., Strzelców Bytomskich 207, 41-914, Bytom, Poland, smolin@gig.katowice.pl
- Central Mining Institute, Plac Gwarkow 1, 40-166, Katowice, Poland
Bibliografia
- [1] Kononenko M, Khomenko O, Kovalenko I, Savchenko M. Control of density and velocity of emulsion explosives detonation for ore breaking. Naukovyi Visnyk Natsio- nalnoho Hirnychoho Universytetu 2021;(2):69-75. https://doi.org/10.33271/nvngu/2021-2/069.
- [2] Khomenko O, Kononenko M, Myronova I, Savchenko M. Application of the emulsion explosives in the tunnels construction. E3S Web of Conferences 2019;123:01039. https://doi.org/10.1051/e3sconf/201912301039.
- [3] Krysin RS, Ishchenko NI, Klimenko VA, Piven VA, Kuprin VP. Explosive ukranit-PM-1: equipment and fabrication technology. Gornyi Zhurnal 2004;(8):32-7.
- [4] Kholodenko T, Ustimenko Y, Pidkamenna L, Pavlychenko A. Ecological safety of emulsion explosives use at mining enterprises. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining 2014:255-60. https://doi.org/10.1201/b17547-45.
- [5] Myronova I. Prediction of contamination level of the atmosphere at influence zone of iron-ore mine. Mining of Mineral Deposits 2016;10(2):64-71. https://doi.org/10.15407/mining10.02.0064.
- [6] Kononenko M, Khomenko O, Myronova I, Kovalenko I. Economic and environmental aspects of using mining equipment and emulsion explosives for ore mining. Mining Machines 2022;40(2):88-97. https://doi.org/10.32056/KOMAG2022.2.4.
- [7] Myronova I. The level of atmospheric pollution around the iron-ore mine. New Developments In Mining Engineering 2015;2015:193-7. https://doi.org/10.1201/b19901-35.
- [8] Viktorov SD, Kazakov NN, Shlyapin AV, Lapikov IN. The impact of the explosion of a borehole charge on the granulometric composition in the upper area of unregulated crushing. Sustainable Development of Mountain Territories 2016;8(2):161-70. https://doi.org/10.21177/1998-4502-2016-8- 2-161-170.
- [9] Komir VM, Vorob’ev VV. Mechanism of explosive shattering of solid bodies and method of improving its efficiency. Sov Min Sci 1989;25(6):517-9. https://doi.org/10.1007/bf02528301.
- [10] Kononenko M, Khomenko O. New theory for the rock mass destruction by blasting. Mining of Mineral Deposits 2021; 15(2):111-23. https://doi.org/10.33271/mining15.02.111.
- [11] Dubinski J, Jura B, Janoszek T, Makówka J, Skiba J, Hildebrandt R, et al. In-situ experimental study on hydro borehole technology application to improve the hard coal excavating techniques in coal mine. Sci Rep 2023;13(1):1190. https://doi.org/10.1038/s41598-023-28501-7.
- [12] Wang K, Zhang X, Du F, Li K, Sun J, Wang Y. Numerical study on damage response and failure mechanism of gascontaining coal-rock combination under confining pressure effect. Fuel 2023;(341):128683. https://doi.org/10.1016/j.fuel.2023.128683.
- [13] Smoliński A, Wojtacha-Rychter K, Król M, Magdziarczyk M, Polanski J, Howaniec N. Co-gasification of waste-derived- fuel and bituminous coal with oxygen/steam blend to hydrogen rich gas. Part A Energy 2022;254:124210. https://doi.org/10.1016/j.energy.2022.124210.
- [14] Kuzmenko O, Dychkovskyi R, Petlovanyi M, Buketov V, Howaniec N, Smolinski A. Mechanism of interaction of backfill mixtures with natural rock fractures within the zone of their intense manifestation while developing steep ore deposits. Sustainability 2023;15(6):4889. https://doi.org/10.3390/su15064889.
- [15] Mutke G, Dubinski J, Lurka A. New criteria to assess seismic and rock burst hazard in coal mines. Arch Min Sci 2015;3. https://doi.org/10.1515/amsc-2015-0049.
- [16] Cioca IL, Moraru RI. Explosion and/or fire risk assessment methodology: a common approach, structured for underground coalmine environments. Arch Min Sci 2012;1. https://doi.org/10.2478/v10267-012-0004-7.
- [17] Esen S, Onederra I, Bilgin HA. Modelling the size of the crushed zone around a blasthole. Int J Rock Mech Min Sci 2003;(40): 485-95. https://doi.org/10.1016/s1365-1609(03)00018-2.
- [18] Torbica S, Lapcevic V. Rock breakage by explosives. European Int J Sci Technol 2014;3(2):96-104.
- [19] Danilenko VV. Vzryv: fizika, tekhnika, tekhnologiya784. Moskva: Energoatomizdat; 2010. p. 121-8.
- [20] Sobolev VV, Kulivar VV, Kyrychenko OL, Kurliak AV, Balakin OO. Evaluation of blast wave parameters within the near-explosion zone in the process of rock breaking with borehole charges. Naukovyi Visnyk Natsionalnoho Hirny- choho Universytetu 2020;(2):47-52. https://doi.org/10.33271/nvngu/2020-2/047.
- [21] Andrievskij AP, Kutuzov BN, Matveev PE, Nikolaev YuI. On the crush zone formation in a rock massif under its blasting loading by column charges. Fiziko-Tehnicheskiye Probl Razrab Polezn Iskopayemykh 1997;1:39-44.
- [22] Mosinets VN, Gorbacheva NP. A seismological method of determining the parameters of the zones of deformation of rock by blasting. Sov Min Sci 1972;8(6):640-7. https://doi.org/10.1007/bf02497586.
- [23] Persson PA, Holmberg R, Lee J. Rock blasting and explosives engineering. Boca Raton, Fla: CRC Press; 1993. p. 560.
- [24] Torbica S, Lapcevic V. Estimating extent and properties of blast-damaged zone around underground excavations. Rem 2015;68(4):441-53. https://doi.org/10.1590/0370-44672015680062.
- [25] Fesik SP. Spravochnik po soprotivleniyu materialov. Kiev: Budivel'nik; 1982. p. 280.
- [26] Andrievskii AP, Kutuzov BN, Matveev PF, Nikolaev YI. Formation of the blast crater in a rock mass blast-loaded by column charges. J Min Sci 1996;32(5):390-4. https://doi.org/10.1007/bf02046160.
- [27] Kononenko M, Khomenko O, Savchenko M, Kovalenko I. Method for calculation of drilling-and-blasting operations parameters for emulsion explosives. Mining Of Mineral Deposits 2019;13(3):22-30. https://doi.org/10.33271/mining13.03.022.
- [28] Khomenko O, Kononenko M. Geo-energetics of Ukrainian crystalline shield. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2019;(3):12-21. https://doi.org/10.29202/nvngu/2019-3/3.
- [29] Dychkovskyi RO. Forming the bilayer artificially created shell of georeactor in underground coal well gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2015;5:37-42.
- [30] Belyaev NM. Soprotivlenie materialov. Moskva: Fizmatgiz; 1962. p. 856.
- [31] Anistratov YuI. Energeticheskaya teoriya rascheta tekhnologii otkrytykh gornykh rabot. Gornyy informatsionno-analiticheskiy byulleten 1996;(3):20-9.
- [32] Pokrovskiy GI. Vzryv. Moskva: Nedra; 1980. p. 190.
- [33] Falshtynskyi V, Dychkovskyi R, Khomenko O, Kononenko M. On the formation of a mine-based energy resource complex. E3S Web of Conferences 2020;201:01020. https://doi.org/10.1051/e3sconf/202020101020.
- [34] Fedko MB, Muzyka IO, Pysmennyi SV, Kalinichenko OV. Determination of drilling and blasting parameters considering the stress-strain state of rock ores. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2019;(1):37-41. https://doi.org/10.29202/nvngu/2019-1/20.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b4260e88-a901-4197-a8f5-3d0c8315d329