Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 23, nr 1 | 202--211
Tytuł artykułu

Stress and deformation analysis of clamped functionally graded rotating disks with variable thickness

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study reports the linear elastic analysis of variable thickness functionally graded rotating disks. Disk material is graded radially by varying the volume fraction ratios of the constituent components. Three types of distribution laws, namely power law, exponential law and Mori-Tanaka scheme are considered on a concave thickness profile rotating disk, and the resulting deformation and stresses are evaluated for clamped-free boundary condition. The investigation is carried out using element based grading of material properties on the discretized elements. The effect of grading on deformation and stresses is investigated for each type of material distribution law. Further, a comparison is made between different types of distributions. The results obtained show that in a rotating disk, the deformation and stress fields can be controlled by the distribution law and grading parameter n of the volume fraction ratio.
Wydawca

Rocznik
Strony
202--211
Opis fizyczny
Bibliogr. 32 poz., 1 rys., wykr.
Twórcy
  • Institute of Technology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India, amkthawait@gmail.com
  • Shri Shankaracharya Technical Campus (SSGI), Bhilai, 490020, Chhattisgarh, India
  • National Institute of Technology, Raipur, 492010, Chhattisgarh, India
Bibliografia
  • [1] Gupta S. K., Sharma S., Pathak S.: Creep Transition in a Thin Rotating Disc having Variable Thickness and Variable Density. Indian J. pure Appl. Math., 31, 2006, 1235-1248.
  • [2] Eraslan A. N.: Elastic-plastic deformations of rotating variable thickness annular disks with free, pressurized and radially constrained boundary conditions. IJMS, 45, 2003, 643-667.
  • [3] Eraslan A. N., Orcan Y.: A Parametric Analysis of Rotating Variable Thickness Elastoplastic Annular Disks Subjected to Pressurized and Radially Constrained Boundary Conditions. Turkish J. Eng. Env. Sci., 28, 2004, 381-395.
  • [4] Ramanjaneyulu B. V. V. S. S., Dasgupta A.: Finite Element Analysis of Stiffened Rotating Disc. paper presented at National Conference on Machines and Mechanisms, Guwahati, India, 2005.
  • [5] Stump F. V., Paulino G. H. and Silva E. C. N.: Material Distribution Design of Functionally Graded Rotating Disks with Stress Constraint, paper presented at 6th World Congresses of Structural and Multidisciplinary Optimization. Rio de Janeiro, Brazil, 2005.
  • [6] Bayat M., Saleem M., Sahari B. B., Hamouda A. M. S., Mahdi E: Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads. International Journal of Pressure Vessels and Piping, 86, 2009, 357-372.
  • [7] Afsar A. M., Go J.: Finite element analysis of thermoelastic field in a rotating FGM circular disk. Applied Mathematical Modelling, 34, 2010, 3309-3320.
  • [8] Zenkour A. M., Mashat D S: Analytical and Numerical Solutions for a Rotating Annular Disk of Variable Thickness. Applied Mathematics, 1, 2010, 431-438.
  • [9] Callioglu H., Bektas N. B., Sayer M.: Stress analysis of functionally graded rotating discs: analytical and numerical solutions. Acta Mech. Sin, 27, 2011, 950-955.
  • [10] Callioglu H.: Stress analysis in a functionally graded disc under mechanical loads and a steady state temperature distribution. Sadhana, 36, 2011, 53-64.
  • [11] Bayat M., Sahari B. B., Saleem M., Dezvareh E., Mohazzab A. H.: Analysis of Functionally Graded Rotating Disks with Parabolic Concave Thickness Applying an Exponential Function and the Mori-Tanaka Scheme. IOP Conf. Series: Materials Science and Engineering, 17, 2011, 1-11.
  • [12] Callioglu H., Sayer M., Demir E.: Stress analysis of functionally graded discs under mechanical and thermal loads. Indian Journal of Engineering & Material Sciences, 18, 2011, 111-118.
  • [13] Zenkour A. M., Mashat D. S.: Stress Function of a Rotating Variable-Thickness Annular Disk Using Exact and Numerical Methods. SCIRP Engineering, 3, 2011, 422-430.
  • [14] Sharma J. N., Sharma D., Kumar S.: Analysis of Stresses and Strains in a Rotating Homogeneous Thermoelastic Circular Disk by using Finite Element Method. International Journal of Computer Applications, 35, 2011, 10-14.
  • [15] Sharma J. N., Sharma D., Kumar S.: Stress and strain analysis of rotating FGM Thermoelastic circular disk by using FEM. International Journal of Pure and Applied Mathematics, 74, 2012, 339-352.
  • [16] Ali A., Bayat M., Sahari B. B., Saleem M., Zaroog O. S.: The effect of ceramic in combinations of two sigmoid functionally graded rotating disks with variable thickness. Scientific Research and Essays, 7, 2012, 2174-2188.
  • [17] Peng X. L., Li X. F.: Effects of gradient on stress distribution in rotating functionally graded solid disks. Journal of Mechanical Science and Technology, 26, 2012, 1483-1492.
  • [18] Jahromi B. H., Hashemi H. N., Vaziri A.: Elasto-Plastic Stresses in a Functionally Graded Rotating Disk. Journal of Engineering Materials and Technology, 134, 2012, 1-11.
  • [19] Maruthi B. H., Reddy M. V., Channakeshavalu K.: Finite Element Formulation for Prediction of Over-speed and burst-margin limits in Aero-engine disc. International Journal of Soft Computing and Engineering, 2, 2012, 172-176.
  • [20] Nejad A., Abedi M., Hassan M., Ghannad M.: Elastic analysis of exponential FGM disks subjected to internal and external pressure. Central European Journal of Engineering, 3, 2013, 459-465.
  • [21] Shariyat M., Mohammadjani R.: Three-dimensional compatible finite element stress analysis of spinning two-directional FGM annular plates and disks with load and elastic foundation nonuniformities. LAJSS, 10, 2013, 859-890.
  • [22] Jabbari M., Hatefkia A., Shokouhfar M.: Mechanical stresses in a Linear Plastic FGM Hollow and Solid Rotational Disk. Journal of Solid Mechanics, 5, 2013, 402-417.
  • [23] Tutuncu N., Temel B.: An Eflcient Unified Method for Thermoelastic Analysis of Functionally Graded Rotating Disks of Variable Thickness. Mechanics of Advanced Materials and Structures, 20, 2013, 38-46.
  • [24] Nejad M. Z., Abedi M., Lotfian M. H., Ghannad M.: Elastic analysis of exponential FGM disks subjected to internal and external pressure. Central European Journal of Engineering, 3, 2013, 459-465.
  • [25] Zafarmand H., Hassani B.: Analysis of two-dimensional functionally graded rotating thick disks with variable thickness. Acta Mech, 225, 2014, 453-464.
  • [26] Rosyid A., Saheb M. E., Yahia F. B.: Stress Analysis of Nonhomogeneous Rotating Disc with Arbitrarily Variable Thickness Using Finite Element Method. Research Journal of Applied Sciences, Engineering and Technology, 7, 2014, 3114-3125.
  • [27] Bhandari M., Purohit K.: Analysis of Functionally GradedMaterial Plate under Transverse Load for Various Boundary Conditions. IOSR-Journal of Mechanical and Civil Engineering, 10, 2014, 46- 55.
  • [28] Zafarmand H., Kadkhodayan M: Nonlinear analysis of functionally graded nanocomposite rotating thick disks with variable thickness reinforced with carbon nanotubes. Aerospace Science and Technology, 41, 2015, 47-54.
  • [29] Sondhi L., Sanyal S., Saha K. N., Bhowmick S.: An Approximate Solution to the Stress and Deformation States of Functionally Graded Rotating disks, paper presented at International Conference on Mechanical Engineering, London, UK, 2015.
  • [30] Thawait A. K., Sondhi L., Bhowmick S., Sanyal S.: An Investigation Of Stresses And Deformation States Of Clamped Rotating Functionally Graded Disks. Journal of Theoretical and Applied Mechanics, 55, 2017, 189-198.
  • [31] Thawait A. K., Sondhi L., Sanyal S., Bhowmick S.: Elastic Analysis of Functionally Graded Variable Thickness Rotating Disk by Element Based Material Grading. Journal of Solid Mechanics, 9, 2017, 650-662.
  • [32] Seshu P.: A text book of finite element analysis, PHI Learning Pvt. Ltd, New Delhi, India, 2003.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b3f574c8-8afa-4483-a2bc-7c2bd37173f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.