Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | Vol. 20, Fasc. 1 | 63--73
Tytuł artykułu

On Paul Lévy’s arc sine law and Shiga-Watanabe’s time inversion result

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let ((Xt), P) be a symmetric real-valued H-self-similar diffusion starting at 0. We characterize the distributions of At, the time spent on (0, ∞) before time t, and gt, the time of the last visit to 0 before t. This gives a simple new proof to well-known results in cluding P. Lévy’s arc sine law for Brownian motion and Brownian bridge and similar results for symmetrized Bessel processes. Our focus is more on simplicity of proofs than on novelty of results. Section 3 contains a generalization of T. Shiga’s and S. Watanabe’s theorem on time inversion for Bessel processes. We show that their result holds also for symmetrized Bessel processes.
Słowa kluczowe
Wydawca

Rocznik
Strony
63--73
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
  • Department of Mathematics, University of Aarhus, Ny Munkegade, 8000 Aarhus C, Denmark
Bibliografia
  • [1] М. T. Barlow, J. W. Pitman and M. Yor, Une extension multidimensionelle de la loi de Гarc sinus, Sém. Probab. XXIII, Lecture Notes in Math. 1372, Springer, 1989, pp. 294-314.
  • [2] R. M. Blumenthal and R. K. Getоor, Markov Processes and Potential Theory, Academic Press, New York-London 1968.
  • [3] A. Borodin and P. Salminen, Handbook of Brownian Motion: Facts and Formulae, Birkhäuser 1996.
  • [4] E. B. Dynkin, Some limit theorems for sums of independent random variables with infinite mathematical expectations, Selected Transl, in Math. Statist, and Probab., Vol. 1, IMS-AMS, 1961, pp. 171-189.
  • [5] R. K. Getoor and M. J. Sharpe, On the arc sine laws for Lévy processes, J. Appl. Probab. 31 (1994), pp. 76-89.
  • [6] J. W. Lamperti, Semi-stable stochastic processes, Trans. Amer. Math. Soc. 104 (1962), pp. 62-78.
  • [7] J. W. Lamperti, Semi-stable Markov processes I, Z. Wahrsch. verw. Gebiete 22 (1972), pp. 205-225.
  • [8] P. Lévy, Sur certains processus stochastiques homogenes, Compositio Math. 7 (1939), pp. 283-339.
  • [9] J. W. Pitman and M. Yor, Bessel processes and infinitely divisible laws, in: Stochastic Integrals, D. Williams (Ed.), Lecture Notes in Math. 851, Springer, 1981.
  • [10] J. W. Pitman and M. Yor, Arc sine laws and interval partitions derived from a stable subordinator, Proc. London Math. Soc. (3) 65 (1992), pp. 326-356.
  • [11] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, 1991.
  • [12] T. Shiga and S. Watanabe, Bessel diffusions as one-parameter family of diffusion processes, Z. Wahrsch. verw. Gebiete 27 (1973), pp. 37-46.
  • [13] J. Vuolle-Apiala, Skew Brownian motion-type of extensions, J. Theoret. Probab. 9 (4) (1996), pp. 853-861.
  • [14] S. Watanabe, On time inversion of one-dimensional diffusion processes, Z. Wahrsch. verw. Gebiete 31 (1975), pp. 115-124.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b39fc69a-bcd3-4d2c-a159-203ec5547815
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.