Warianty tytułu
Języki publikacji
Abstrakty
Nano-ZnO/transition metal composites (NZTC) were prepared via sol-gel method where transition metal (Cu2+, Ag+, Co2+ and Ni2+) and ZnSO4 were used as the substrate. NZTC was characterized using scanning electronic microscope (SEM), ultraviolet-visible spectrophotometer (UV), fluorescence spectrophotometer (XRF), infrared spectrometer (IR), and so on. The photocatalytic degradation behaviors of nano-ZnO and NZTC for formaldehyde in gas and solution were investigated. The results indicated that nano-ZnO and NZTC could achieve the degradation of formaldehyde by photocatalytic process, and the degradation rates were up to 43.75% and 67.2% in gas and solution, respectively, thus thereby leading to good application prospects in the degradation of organic compounds.
Czasopismo
Rocznik
Tom
Strony
51--55
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wz.
Twórcy
autor
- College of Chemistry & Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, Henan, China
autor
- College of Chemistry & Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, Henan, China, qijie001@163.com
autor
- College of Chemistry & Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, Henan, China
autor
- College of Chemistry & Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, Henan, China
autor
- College of Chemistry & Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, Henan, China
autor
- College of Chemistry & Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, Henan, China
Bibliografia
- 1. Protano, C., Buomprisco, G., Cammalleri, V., Pocino, R.N., Marotta, D., Simonazzi, S. & Vitali, M. (2021). The carcinogenic effects of formaldehyde occupational exposure: a systematic review. Cancers, 14(1), 165–165. DOI: 10.3390/cancers14010165.
- 2. Kristak, L., Antov, P., Bekhta, P., Lubis, M.A.R., Iswanto, A.H., Reh, R. & Hejna, A. (2023). Recent progress in ultra-low formaldehyde emitting adhesive systems and formaldehyde scavengers in wood-based panels: A review. Wood Mater. Sci. Eng. 18(2), 763–782. DOI: 10.1080/17480272.2022.2056080.
- 3. La Torre, G., Vitello, T., Cocchiara, R.A. & Della Rocca, C. (2023). Relationship between formaldehyde exposure, respiratory irritant effects and cancers: a review of reviews. Public Health, 218, 186–196. DOI: 10.1016/j.puhe.2023.03.009.
- 4.Zheng, J.Y., Han, C.B., Zhao, W.K., Lu, Y.G., Sun, B.C., Sun, L. & Yan, H. (2023). Electro-injection-enhanced catalytic formaldehyde degradation based on conductive MnOx cellulose aerogels at room temperature. Appl. Catal. B-Environ. 334, 122837. DOI: 10.1016/j.apcatb.2023.122837.
- 5. Jo, Y.K., Jeong, S.Y., Moon, Y.K., Jo, Y.M., Yoon, J.W. & Lee, J.H. (2021). Exclusive and ultrasensitive detection of formaldehyde at room temperature using a flexible and monolithic chemiresistive sensor. Nature Commun. 12(1), 4955. DOI: 10.1038/s41467-021-25290-3.
- 6. Lv, H., Liu, Y., Zhao, P., Bai, Y., Cui, W., Shen, S. & Yu, D.G. (2023). Insight into the superior piezophotocatalytic performance of BaTiO3//ZnO Janus nanofibrous heterostructures in the treatment of multi-pollutants from water. Appl. Catal. B-Environ. 330, 122623. DOI: 10.1016/j.apcatb.2023.122623.
- 7. Rani, M., Pandey, S., Sharma, S. & Shanker, U. (2024). Sunlight assisted highly efficient photocatalytic remediation of organic pollutants by green biosynthesized ZnO@WO3 nanocomposite. J. Photoch. Photobio. A, 446, 115160. DOI: 10.1016/j.jphotochem.2023.115160.
- 8. Al Ja’farawy, M.S., Kusumandari, A.P. & Widiyandari, H. (2022). Carbon quantum dots supported zinc oxide (ZnO/CQDs) efficient photocatalyst for organic pollutant degradation-A systematic review, Environ. Nanotechnol. Monit. Manag. 18, 100681. DOI: 10.1016/j.enmm.2022.100681.
- 9. Zheng, S., Li, X., Zhang, J., Wang, J., Zhao, C., Hu, X. & He, Y. (2023). One-step preparation of MoOx/ZnS/ZnO composite and its excellent performance in piezocatalytic degradation of Rhodamine B under ultrasonic vibration. J. Environ. Sci. 125, 1–13. DOI: 10.1016/j.jes.2021.10.028.
- 10. Kabir, R., Saifullah, M.A.K., Ahmed, A.Z., Masum, S.M. & Molla, M.A.I. (2020). Synthesis of n-doped zno nanocomposites for sunlight photocatalytic degradation of textile dye pollutants. J. Compos. Sci. 4(2), 49. DOI: 10.3390/jcs4020049.
- 11. Qiang, M., Aomin, H., Ke, L., Rui, D., Zhang, H., Bo, X. & Kewen, Z. (2021). Ultrasound-enhanced preparation and photocatalytic properties of graphene-ZnO nanorod composite. Sep. Purif. Technol. 259, 118131. DOI: 10.1016/j. seppur.2020.118131.
- 12. Essalah, G., Kadim, G., Jabar, A., Masrour, R., Ellouze, M., Guermazi, H. & Guermazi, S. (2020). Structural, optical, photoluminescence properties and Ab initio calculations of new Zn2SiO4/ZnO composite for white light emitting diodes. Ceram. Int. 46(8), 12656–12664. DOI: 10.1016/j.ceramint.2020.02.031.
- 13. Shuai, H., Wang, J., Wang, X. & Du, G. (2021). Black Talc-based TiO2/ZnO composite for enhanced UV-Vis photo-catalysis performance. Materials, 14(21), 6474. DOI: 10.3390/ma14216474.
- 14. Kumar, R., Umar, A., Kumar, R., Chauhan, M.S. & Al--Hadeethi, Y. (2021). ZnO-SnO2 nanocubes for fluorescence sensing and dye degradation applications. Ceram. Int. 47(5), 6201–6210. DOI: 10.1016/j.ceramint.2020.10.198.
- 15.Wang, W., Zhang, D., Ji, Z., Shao, D., Sun, P. & Duan, J. (2021). High efficiency photocatalytic degradation of indoor formaldehyde with silver-doped ZnO/g-C3N4 composite catalyst under the synergistic effect of silver plasma effect and heterojunction. Opt. Mater. 111, 110721. DOI: 10.1016/j. optmat.2020.110721.
- 16. Su, H., Li, H., Lin, H., Shi, X., Du, Y., Luo, Y. & Deng, H. (2022). Highly sensitive formaldehyde sensors based on CuO/ZnO composite nanofibrous mats using porous cellulose acetate fibers as templates. Int. J. Biol. Macromol. 206, 653–660. DOI: 10.1016/j.ijbiomac.2022.02.167.
- 17. Zhang, Y., Zhao, G., Gan, L., Lian, H. & Pan, M. (2021). S-doped carbon nanosheets supported ZnO with enhanced visible-light photocatalytic performance for pollutants degradation. J. Clean. Prod. 319, 128803. DOI: 10.1016/j. jclepro.2021.128803.
- 18. Li, B., Liu, H., Zeng, Q., Dong, S. & Feng, W. (2023). Hierarchical porous NiO doped ZnO nanocomposite for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Surf. Interf. 36, 102502. DOI: 10.1016/j.surfin.2022.102502.
- 19. Liu, Y., Zhang, Q., Yuan, H., Luo, K., Li, J., Hu, W. & Bazaka, K. (2021). Comparative study of photocatalysis and gas sensing of ZnO/Ag nanocomposites synthesized by one-and two-step polymer-network gel processes. J. Alloy. Compd. 868, 158723. DOI: 10.1016/j.jallcom.2021.158723.
- 20. Li, B., Kim, I.S., Dai, S., Sarwar, M.N. & Yang, X. (2021). Heterogeneous Ag@ZnO nanorods decorated on polyacrylonitrile fiber membrane for enhancing the photocatalytic and antibacterial properties. Colloid Interface Sci. 45, 100543. DOI: 10.1016/j.colcom.2021.100543.
- 21. Li, H., Sun, Y., Zhang, Q., Yuan, H., Dong, C., Xu, S. & Xu, M. (2023). Facile synthesis of ZnO/Ag/g-C3N4 nanocomposites for multiple applications in photocatalytic degradation and photoactivated NO2 sensing. Appl. Surf. Sci. 638, 158010. DOI: 10.1016/j.apsusc.2023.158010.
- 22. Zhang, Y., Huang, Y., Lin, B., Chen, Z., Xu, X. & Pan, M. (2023). Ti3C2TX MXene supported ZnO nanocomposites with highly efficient photocatalytic performance for degradation of VOCs. Diam. Relat. Mater. 133, 109763. DOI: 10.1016/j. diamond.2023.109763.
- 23. Zhou, W., Yu, B., Zhu, J. & Li, K. (2022). Synthesis of ZnO/Ti2C composites by electrostatic self-assembly for the photocatalytic degradation of methylene blue. J. Mater. Sci. 1–17. DOI: 10.1007/s10853-021-06798-x.
- 24. Zhang, Q., Li, J. & Xu, M. (2022). Ag-decorated ZnO-based nanocomposites for visible light-driven photocatalytic degradation: basic understanding and outlook. J. Phys. D Appl. Phys. 55(48), 483001. DOI: 10.1088/1361-6463/ac941a.
- 25. You, J., Sun, W., Su, S., Ao, Z., Liu, C., Yao, G. & Lai, B. (2020). Degradation of bisphenol A by peroxymonosulfate activated with oxygen vacancy modified nano-NiO-ZnO composite oxides: A typical surface-bound radical system. Chem. Eng. J. 400, 125915. DOI: 10.1016/j.cej.2020.125915.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b3994f08-5edc-46d8-a783-caa386448e85