Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 115, iss. 7 | 191--206
Tytuł artykułu

The microstructure and properties of titanium carbide reinforced stainless steel matrix composites prepared by powder metallurgy

Warianty tytułu
PL
Mikrostruktura i właściwości spiekanych kompozytów o osnowie stali nierdzewnej umacnianych cząstkami węglika tytanu
Języki publikacji
EN
Abstrakty
EN
TiC particle-reinforced AISI 316L stainless-steel matrix composites were prepared using conventional powder metallurgy technology. The effect of TiC content on the microstructure and properties of these composites has been investigated with a particular emphasis upon hardness, wear resistance and corrosion resistance in sea water environments. The results showed that TiC particle reinforcement improved the hardness, wear resistance and corrosion resistance of AISI 316L stainless steel. The higher TiC content in the studied composites resulted in a higher hardness of the wear surface and a lower wear rate. The best corrosion resistance in sea water was achieved for sintered AISI 316L – 5% TiC composite.
PL
Konwencjonalną technologią metalurgii proszków wytworzono umacniane cząstkami TiC kompozyty o osnowie austenitycznej stali AISI 316L. Dokonano oceny wpływu udziału cząstek TiC na mikrostrukturę i właściwości tych kompozytów, w szczególności twardość, odporność na zużycie ścierne i odporność na korozję w środowisku wody morskiej. Stwierdzono, że umocnienie cząstkami TiC doprowadziło do poprawy twardości, odporności na zużycie ścierne i odporności na korozję stali AISI 316L. Wraz ze wzrostem udziału TiC w badanych kompozytach wzrastała twardość powierzchni zużycia, a malała jej szybkość. Natomiast najlepszą odporność na korozję w wodzie morskiej wykazał spiekany kompozyt AISI 316L – 5% TiC.
Wydawca

Rocznik
Strony
191--206
Opis fizyczny
Bibliogr. 25 poz., tab., wykr., il.
Twórcy
Bibliografia
  • [1] Sulima I., Klimczyk P., Hyjek P., The influence of the sintering conditions on the properties of the stainless steel reinforced with TiB2 ceramics, Archives of Materials Science and Engineering, 39, 2009, 103–106.
  • [2] Kurgan N., Effects of sintering atmosphere on microstructure and mechanical property of sintered powder metallurgy 316L stainless steel, Materials and Design, 52, 2013, 995–998.
  • [3] Pandya S., Ramakrishna K.S., Annamalai R.A., Upadhyaya A., Effects of sintering temperature on the mechanical and electrochemical properties of austenitic stainless steel, Materials Science & Engineering A, 556, 2012, 271–277.
  • [4] Popoola A.P.I., Obadele B.A., Popoola O.M., Effects of TiC–Particulate Distribution in AISI 304L stainless steel matrix, Materials Digest Journal of Nanomaterials and Biostructures, 7, 2012.
  • [5] Sulima I., Tribological Properties of Steel/TiB2 Composites Prepared by Spark Plasma Sintering, Archives of Materials Science and Engineering, 59, 2014, 1264–1268.
  • [6] Padmavathi C., Upadhyaya A., Agrawal D., Corrosion behavior of microwave-sintered austenitic stainless steel composites, Scripta Materialia, 57, 2007, 651–654.
  • [7] Nahme H., Lach E., Tarrant A., Mechanical property under high dynamic loading and microstructure evaluation of a TiB2 particle-reinforced stainless steel, Journal of Materials Science, 44, 2009, 463–468.
  • [8] Sulima I., Homa M., Malczewski P., High-temperature corrosion resistance of steel–matrix composites, Metallurgy and Foundry Engineering, 41(2), 2015, 71–84.
  • [9] Szewczyk–Nykiel A., Microstructure and properties of sintered metal matrix composites reinforced with SiC particles, Technical Transactions, 6/2017, 179–190.
  • [10] Lin S.J., Xiong W.H., Wang S.Y., Shi Q.N., Effect of reinforcing particles content on properties of TiC/316L composites, Materials Science and Engineering of Powder Metallurgy, 18(3), 2013, 373–378.
  • [11] Lin S.J., Xiong W.H., Shi Q.N., Wang S.Y., Effect of TiC addition on oxidation behavior of TiC/316L composites and its mechanism, Chinese Journal of Nonferrous Metals, 23(11), 2013, 3121–3126.
  • [12] Öksüz K., Kumruoğlu L., Tur O., Effect of Sicp on the Microstructure and Mechanical Properties of Sintered Distaloy DC Composites, “Procedia Materials Science”, 11/2015, 49–54.
  • [13] Akhtar F., Guo S.J., Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites, Materials Characterization, 59, 2008, 84–90.
  • [14] Pagounis E., Lindroos V.K., Processing and properties of particulate reinforced steel matrix composites, Materials Science and Engineering A, 246, 1998, 221–234.
  • [15] Shaojiang L., Weihao X., Corrosion Behaviour of Powder Metallurgy Processed TiC/316L Composites with Mo Additions, The Minerals, Metals & Materials Society, 67(6), 2015, 1362–1369.
  • [16] Shaojiang L., Weihao X., Microstructure and abrasive behaviors of TiC–316L composites prepared by warm compaction and microwave sintering, Advanced Powder Technology, 23, 2012, 419–425.
  • [17] Hegde A., Patil A., Tambrallimath V., Corrosion Behaviour of Sintered Austenitic Stainless Steel Composites, International Journal of Engineering Research & Technology, 3, 2014, 14–17.
  • [18] Akhtar F., Ceramic reinforced high modulus steel composites: processing, microstructure and properties, Canadian Metallurgical Quaeterly, 53(2), 2014, 253–263.
  • [19] Sulima I., Kowalik R., Corrosion behaviors, mechanical properties and microstructure of the steel matrix composites fabricated by HP–HT method, Materials Science & Engineering A, 639, 2015, 671–680.
  • [20] Sulima I., Klimczyk P., Malczewski P., Effect of TiB2 Particles on the Tribological Properties of Stainless Steel Matrix Composites, Acta Metallurgica Sinica, 27(1), 2014, 12–18.
  • [21] Mima S., Yotkaew T., Morakotjinda M., Tosangthum N., Daraphan A., Karataitong R., Coovattanachai O., Vetayanugul B., Tongsri R., Carbide–Reinforced 316L Composite, The Fourth Thailand Materials Science and Technology Conference, Pathum Thani, Thailand, 31 March–1 April 2006.
  • [22] Coovattanachai O., Mima S., Yodkaew T., Krataitong R., Morkotjinda M., Daraphan A., Tosangthum N., Vetayanugul B., Panumas A., Poolthong N., Tongsri R., Effect of admixed ceramic particles on properties of sintered 316L stainless steel, Advances in Powder Metallurgy and Particulate Materials, 7, 2006, 161–171.
  • [23] Chakthin S., Poolthong N., Thavarungkul N., Tongsri R., Iron–Carbide Composites Prepared by P/M, Processing Materials for Properties, 2009, 577–584.
  • [24] Chakthin S., Morakotjinda M., Yodkaew T., Torsangtum N., Krataithong R., Siriphol P., Coovattanachai O., Vetayanugul B., Thavarungkul N., Poolthong N., Tongsri R., Influence of Carbides on Properties of Sintered Fe–Base Composites, Journal of Metals, Materials and Minerals, 18(2), 2008, 67–70.
  • [25] Xiong W., Lin S., Microstructure and abrasive behaviors of TiC-316L composites prepared by warm compaction and microwave sintering, Advanced Powder Technology, 23(3), 2012, 419–425.
Uwagi
EN
Section "Mechanics"
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b37b50f8-48a7-47a5-b4fe-0e28cd4665f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.