Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 3 | art. no. e214, 2023
Tytuł artykułu

Effect of porosity and characteristics of carbon nanotube on the nonlinear characteristics of a simply-supported sandwich plate

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents geometric-based nonlinear formulation of a composite sandwich plate on the elastic foundation based on first-order shear deformation theory. The composite sandwich plate is fabricated from a porous core integrated with two carbon-nanotubes-reinforced face sheets. After developing the kinematic relations based on first-order shear deformation theory, the geometric nonlinearity is accounted based on von-Karman-type nonlinearity. Porosity of the core is modeled based on two known models in terms of porosity coefficient. After presentation of the effective material properties of the core and the carbon nanotube reinforcement in terms of porosity coefficient, volume fraction of carbon nanotube, and basic material properties, the nonlinear governing equations are derived using Hamilton’s principle. Galerkin’s approach is applied to reduce nonlinear governing equations of motion to an ordinary time-dependent differential equation. The nonlinear frequency is analytically found based on linear frequency and initial boundary conditions. Before presentation of full numerical results, a comprehensive comparative study is presented for verification of the derivation and solution procedure. The nonlinear to linear frequency ratio is computed based on significant input parameters of porous core and carbon-nanotube-reinforced face sheets such as type of porosity, porosity coefficient, volume fraction, and type of reinforcement’s distribution.
Wydawca

Rocznik
Strony
art. no. e214, 2023
Opis fizyczny
Bibliogr. 60 poz., rys., wykr.
Twórcy
  • Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
  • Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran, arefi63@gmail.com
Bibliografia
  • 1. Arefi M, Bidgoli EMR, Dimitri R, Tornabene F. Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. Aerosp Sci Technol. 2018;81:108–17. https://doi.org/10.1016/j.ast.2018.07.036.
  • 2. Arefi M, Firouzeh S, Bidgoli EMR, Civalek Ö. Analysis of porous micro-plates reinforced with FG-GNPs based on reddy plate the- ory. Compos Struct. 2020;247:112391. https://doi.org/10.1016/j. compstruct.2020.112391.
  • 3. Arefi M, Bidgoli EMR, Rabczuk T. Effect of various character- istics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based on MCST. Europ J Mech-A/Solids. 2019;77:103802. https:// doi. org/ 10. 1016/j. eurom echsol. 2019. 103802.
  • 4. Bidgoli EMR, Arefi M. Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation. J Sandw Struct Mater. 2021;23(2):436–72. https://doi.org/10.1177/1099636219839302.
  • 5. Arefi M, Bidgoli EMR, Dimitri R, Bacciocchi M, Tornabene F. Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets. Compos Part B Eng. 2019;166(1):1–12. https://doi.org/10.1016/j.compositesb.2018.11.092.
  • 6. Xue Y, Jin G, Ma X, Chen H, Ye T, Chen M, Zhang Y. Free vibra- tion analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach. Int J Mech Sci. 2019;152:346–62. https://doi.org/10.1016/j.ijmecsci. 2019.01.004.
  • 7. He X, Xie S, Xu J, Yin X, Zhang M. Reactive Template-Engaged Synthesis of NiSx/MoS2 Nanosheets Decorated on Hollow and Porous Carbon Microtubes with Optimal Electronic Modulation toward High-Performance Enzyme-like Performance. Inorg Chem 2023;62(20):8033–8042. https://doi.org/10.1021/acs.inorgchem. 3c01050.
  • 8. Barati MR, Zenkour AM. Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions. J Vib Control. 2018;24(10):1910– 26. https://doi.org/10.1177/1077546316672788.
  • 9. Gupta A, Talha M. Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment. Int J Struct Stab Dyn. 2018;18(01):1850013. https://doi. org/10.1142/S021945541850013X.
  • 10. Gao M, Ding Z, Liao W. Effective elastic properties of irregular auxetic structures. Compos Struct. 2022;287:115269. https://doi. org/10.1016/j.compstruct.2022.115269.
  • 11. Arefi M, Bidgoli EMR, Rabczuk T. Thermo-mechanical buckling behavior of FG GNP reinforced micro plate based on MSGT. Thin-Walled Struct. 2019. https://doi.org/10.1016/j.tws.2019.04. 054.
  • 12. Arefi M, Bidgoli EMR, Dimitri R, Tornabene F, Reddy JN. Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pas- ternak foundations. Appl Sci. 2019;9(8):1580. https://doi.org/10. 3390/app9081580.
  • 13. Arefi M, Bidgoli EMR, Civalek O. Bending response of FG composite doubly curved nanoshells with thickness stretching via higher-order sinusoidal shear theory. Mech Based Design Struct Mach. 2022;50(7):2350–78. https://doi.org/10.1080/15397734. 2020.1777157.
  • 14. Arefi M, Moghaddam SK, Bidgoli EMR, Kiani M, Civalek O. Analysis of graphene nanoplatelet reinforced cylindrical shell subjected to thermo-mechanical loads. Compos Struct. 2021;255:112924. https:// doi. org/ 10. 1016/j. comps truct. 2020. 112924.
  • 15. Dat ND, Thanh NV, Minh Anh V, Duc ND. Vibration and nonlinear dynamic analysis of sandwich FG-CNTRC plate with porous core layer. Mech Adv Mater Struct. 2022;29(10):1431– 48. https://doi.org/10.1080/15376494.2020.1822476.
  • 16. Rao R, Sahmani S, Safaei B. Isogeometric nonlinear bending analysis of porous FG composite microplates with a central cutout modeled by the couple stress continuum quasi-3D plate theory. Arch Civil Mech Eng. 2021;21:98. https:// doi. org/ 10. 1007/s43452-021-00250-2.
  • 17. Li Q, Wu D, Chen X, Liu L, Yu Y, Gao W. Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement rest- ing on Winkler-Pasternak elastic foundation. Int J Mech Sci. 2018;148:596–610. https://doi.org/10.1016/j.ijmecsci.2018.09. 020.
  • 18. Chen D, Kitipornchai S, Yang J. Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Struct. 2016;107:39–48. https:// doi. org/ 10. 1016/j.tws.2016.05.025.
  • 19. Bansal G, Gupta A, Katiyar V. Vibration of porous functionally graded plates with geometric discontinuities and partial supports, Proceedings of the Institution of Mechanical Engineers. Part C Journal of Mechanical Engineering Science. 2020;234(21):4149– 4170. https://doi.org/10.1177/0954406220920660.
  • 20. Demirhan PA, Taskin V. Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach. Compos Part B Eng. 2019;160:661–76. https://doi.org/ 10.1016/j.compositesb.2018.12.020.
  • 21. Fu YM, Hong JW, Wang XQ. Analysis of nonlinear vibration for embedded carbon nanotubes. J Sound Vib. 2006;296(4–5):746– 56. https://doi.org/10.1016/j.jsv.2006.02.024.
  • 22. Fang B, Zhen YX, Zhang CP, Tang Y. Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory. Appl Math Modelling. 2013;37(3):1096–107. https://doi. org/10.1016/j.apm.2012.03.032.
  • 23. Yan Y, Wang W, Zhang L. Applied multiscale method to analysis of nonlinear vibration for double-walled carbon nanotubes. Appl Math Modelling. 2011;35(5):2279–89. https://doi.org/10.1016/j. apm.2010.11.035.
  • 24. Chang TP. Nonlinear vibration of single-walled carbon nanotubes with nonlinear damping and random material properties under magnetic field. Compos Part B Eng. 2017;114:69–79. https://doi. org/10.1016/j.compositesb.2017.01.064.
  • 25. Soltani P, Ganji DD, Mehdipour I, Farshidianfar A. Nonlinear vibration and rippling instability for embedded carbon nanotubes. J Mech Sci Technol. 2012;26:985–92. https://doi.org/10.1007/ s12206-011-1006-7.
  • 26. Rasekh M, Khadem SE. Nonlinear vibration and stability analysis of axially loaded embedded carbon nanotubes conveying fluid. J Phys D Appl Phys. 2009;42:13. https://doi.org/10.1088/0022- 3727/42/13/135112.
  • 27. Zhen YX, Fang B. Nonlinear vibration of fluid-conveying single-walled carbon nanotubes under harmonic excitation. Int J Non-Linear Mech. 2015;76:48–55. https://doi.org/10.1016/j.ijnonlin- mec.2015.05.005.
  • 28. Lotfan S, Fathi R, Ettefagh MM. Size-dependent nonlinear vibra- tion analysis of carbon nanotubes conveying multiphase flow. Int J Mech Sci. 2016;115–116:723–35.
  • 29. Rezaiee-Pajand M, Arabi Amir E, Masoodi R. Nonlinear anal- ysis of FG-sandwich plates and shells. Aerosp Sci Technol. 2019;87:178–89. https://doi.org/10.1016/j.ast.2019.02.017.
  • 30. Chang TP. Stochastic FEM on nonlinear vibration of fluid-loaded double-walled carbon nanotubes subjected to a moving load based on nonlocal elasticity theory. Compos Part B Eng. 2013;54:391–9. https://doi.org/10.1016/j.compositesb.2013.06. 012.
  • 31. Wang ZX, Shen HS. Nonlinear vibration of nanotube-reinforced composite plates in thermal environments. Computational Mater Sci. 2011;50(8):2319–30. https://doi.org/10.1016/j.commatsci. 2011.03.005.
  • 32. Wang YZ, Wang YS, Ke LL. Nonlinear vibration of carbon nanotube embedded in viscous elastic matrix under parametric excitation by nonlocal continuum theory. Physica E Low- Dimens Syst Nanostructures. 2016;83:195–200.
  • 33. Esayas LSh, Kattimani S, Vinyas M. Nonlinear free vibration and transient responses of porous functionally graded magneto-electro-elastic plates. Arch Civil Mech Eng. 2022. https://doi. org/10.1007/s43452-021-00357-6.
  • 34. Wu CP, Chen YH, Hong ZL, Lin CH. Nonlinear vibration analysis of an embedded multi-walled carbon nanotube. Adv Nano Res. 2018;6(2):163–82. https://doi.org/10.12989/anr.2018.6.2. 163.
  • 35. Huang K, Guo H, Qin Z, Cao S, Chen Y. Flutter analysis of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method. Aerosp Sci Technol. 2020;103:105915. https:// doi. org/ 10. 1016/j. ast. 2020.105915.
  • 36. Ansari R, Hemmatnezhad M, Ramezannezhad H. Application of HPM to the nonlinear vibrations of multiwalled carbon nano-tubes. Numer Methods Partial Differ Equ. 2010;26(2):490–500. https://doi.org/10.1002/num.20499.
  • 37. Ouakad HM, Valipour A, Żur KK, Sedighi MH, Reddy JN. On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal inte- gral elasticity. Mech Mater. 2020;148:103532. https://doi.org/ 10.1016/j.mechmat.2020.103532.
  • 38. Hajnayeb A, Khadem SE. Nonlinear vibration and stability analysis of a double-walled carbon nanotube under electrostatic actuation. J Sound Vib. 2012;331(10):2443–56. https://doi.org/ 10.1016/j.jsv.2012.01.008.
  • 39. Ke LL, Wang YS, Wang ZD. Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos Struct. 2012;94(6):2038–47. https://doi.org/10.1016/j.compstruct.2012. 01.023.
  • 40. Selim BA, Liu Z, Liew KM. Active vibration control of functionally graded graphene nanoplatelets reinforced composite plates integrated with piezoelectric layers. Thin-Walled Struct. 2019;145:106372. https://doi.org/10.1016/j.tws.2019.106372.
  • 41. Majidi-Mozafari K, Bahaadini R, Saidi AR, Khodabakhsh R. An analytical solution for vibration analysis of sandwich plates reinforced with graphene nanoplatelets. Eng Comput. 2022;38:2107–23. https://doi.org/10.1007/s00366-020-01183-9.
  • 42. Zhao CY, et al. High lithiophilic nitrogen-doped carbon nanotube arrays prepared by in-situ catalyze for lithium metal anode. Chin Chem Lett. 2021;32(7):2254–8. https://doi.org/10.1016/j. cclet.2020.12.056.
  • 43. Han Y, Shao S, Fang B, Shi T, Zhang B, Wang X, Zhao X. Chloride ion penetration resistance of matrix and interfacial transition zone of multi-walled carbon nanotube-reinforced concrete. J Building Eng. 2023;72:106587. https://doi.org/10.1016/j.jobe. 2023.106587.
  • 44. Zong LB, et al. Stable confinement of Fe/Fe3C in Fe, N-codoped carbon nanotube towards robust zinc-air batteries. Chin Chem Lett. 2021;32(3):1121–6. https://doi.org/10.1016/j.cclet.2020. 08.029.
  • 45. Zhang Y, Liu G, Ye J, Lin Y. Crushing and parametric studies of polygonal substructures based hierarchical cellular honeycombs with non-uniform wall thickness. Compos Struct. 2022;299:116087. https:// doi. org/ 10. 1016/j. comps truct. 2022. 116087.
  • 46. Wang Z, Dai L, Yao J, Guo T, Hrynsphan D, Tatsiana S, Chen J. Enhanced adsorption and reduction performance of nitrate by Fe–Pd–Fe3O4 embedded multi-walled carbon nanotubes. Chemosphere. 2021;281:130718. https://doi.org/10.1016/j.chemo sphere.2021.130718.
  • 47. Xin ZK, et al. Amorphous carbon-linked TiO2/carbon nanotube film composite with enhanced photocatalytic performance: the effect of interface contact and hydrophilicity. Chin Chem Lett. 2021;32(7):2151–4.
  • 48. Huang K, Xu Q, Ying Q, Gu B, Yuan W. Wireless strain sensing using carbon nanotube composite film. Compos Part B Eng. 2023;256:110650. https://doi.org/10.1016/j.compositesb.2023. 110650.
  • 49. Lu Z, Gu D, Ding H, Lacarbonara W, Chen L. Nonlinear vibration isolation via a circularring. Mech Syst Signal Process. 2020;136:106490. https:// doi. org/ 10. 1016/j. ymssp. 2019. 106490.
  • 50. Dong Y, Shao P, Guo X, Xu B et. al. Deformation characterization method of typical double-walled turbine blade structure during casting process. J Iron Steel Res Int. 2023. https://doi. org/10.1007/s42243-022-00897-y.
  • 51. Zhang Z, Chen J, Wang J, Han Y, Yu Z, Wang Q, Yang S. Effects of solder thickness on interface behavior and nanoindentation characteristics in Cu/Sn/Cu microbumps. Weld World. 2022;66(5):973–983. https:// doi. org/ 10. 1007/ s40194-022-01261-0.
  • 52. Hao R, Lu Z, Ding H, Chen L. Orthogonal six-DOFs vibration isolation with tunable high-static-low-dynamic stiffness: Experiment and analysis. Int J Mech Sci. 2022;222:107237. https://doi.org/10.1016/j.ijmecsci.2022.107237.
  • 53. Liu M, Huang J, Meng H, Liu C, Chen Z, Yang H, Zhang S. A novel approach to prepare graphite nanoplatelets exfoliated by three-roll milling in phenolic resin for low-carbon MgO-C refractories. J Eur Ceramic Soc. 2023;43(9):4198–4208. https:// doi.org/10.1016/j.jeurceramsoc.2023.02.064.
  • 54. Zhang Z, Sui M, Li C, Zhou Z, Liu B, Chen Y, Said Z, Debnath S, Sharma S. Residual stress of MoS2 nano-lubricant grinding cemented carbide. Int J Adv Manuf Technol. 2022;119:5671– 85. https://doi.org/10.1007/s00170-022-08660-z.
  • 55. Liu M, Li C, Zhang Y, Yang M, Gao T, Cui X, Wang X, Xu W, Zhou Z, Liu B, Said Z, Li R, Sharma S. Analysis of grinding mechanics and improved grinding force model based on randomized grain geometric characteristics. Chin J Aeronaut. 2022. https://doi.org/10.1016/j.cja.2022.11.005.
  • 56. Qiao W, Fu Z, Du M, Wei N, Liu E. Seasonal peak load prediction of underground gas storage using a novel two-stage model combining improved complete ensemble empirical mode decomposition and long short-term memory with a sparrow search algorithm. Energy. 2023;274:127376. https:// doi. org/ 10.1016/j.energy.2023.127376.
  • 57. Qian Q, Wang Y, Zhu F, et al. Primary nonlinear damped natural frequency of dielectric composite beam reinforced with graphene platelets (GPLs). Arch Civil Mech Eng. 2022;22:53. https://doi.org/10.1007/s43452-021-00369-2.
  • 58. Rao R, Ye Z, Yang Z, et al. Nonlinear buckling mode transition analysis of axial–thermal–electrical-loaded FG piezoelectric nanopanels incorporating nonlocal and couple stress tensors. Arch Civil Mech Eng. 2022;22:125. https:// doi. org/ 10. 1007/ s43452-022-00437-1.
  • 59. Al-Furjan MSH, Dehini R, Paknahad M, et al. On the nonlinear dynamics of the multi-scale hybrid nanocomposite- reinforced annular plate under hygro-thermal environment. Arch Civil Mech Eng. 2021;21:4. https:// doi. org/ 10. 1007/ s43452-020-00151-w.
  • 60. Zhang X, Tang Y, Zhang F, Lee C. A novel aluminum-graphite dualion battery. Adv Energy Mater. 2016;6(11):1502588. https:// doi.org/10.1002/aenm.201502588.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b32bf719-5a63-4e0b-ae3c-b752b73a9257
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.