Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 24, No. 1 | 25--33
Tytuł artykułu

Influence of doping on the performance of GaAs/AlGaAs QWIP for long wavelength applications

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effect of doping and other device parameters on inter sub−band transition in the well, responsivity and dark current of GaAs/AlxGa1-xAs quantum well infrared photodetector (QWIP) is investigated using theoretical model. 2X2 Hamiltonian method is used to calculate Eigen energy states in this modelling. Results show that peak absorption, responsivity and spectral broadening width increase nonlinearly with increasing doping concentration in the well. Peak absorption coefficient increases with increase in well width also. Moreover, with increase in mole fraction of Al in AlxGa1-xAs barrier, the inter sub-band absorption is enhanced but, peak wavelength of absorption shifts towards shorter wavelengths. Dark current density depends on both, the doping concentration and applied bias.
Wydawca

Rocznik
Strony
25--33
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
autor
  • SAP Research Laboratory, Dept. of Electronics Engineering, Indian School of Mines, Dhanbad - 826004, Jharkhand, India, rf.billaha@gmail.com
autor
  • SAP Research Laboratory, Dept. of Electronics Engineering, Indian School of Mines, Dhanbad - 826004, Jharkhand, India
Bibliografia
  • 1. B.F. Levine, “Quantum-well infrared photo-detectors,” J. Appl Phys. 74, R1 (1993).
  • 2. T. Mei, H.Li, G. Karunasiri, W.J. Fan, D.H. Zhang, S.F. Yoon, and K.H. Yuan, “Normal incidence silicon doped p-type GaAs/AlGaAs quantum-well infrared photodetector on (111) substrate,” Infrared Phys. & Tech. 50, 119-123 (2007).
  • 3. F.D.P. Alves, J. Amorim, M. Byloos, H.C. Liu, A. Bezinger, M. Buchanan, N. Hanson, and G. Karunasiri, “Three band Quantum well infrared photodetector using interband and intersubband transitions”, J. Appl. Phys. 103, 114-515 (2008).
  • 4. V. Ryzhii, “Characteristics of quantum well infrared photo-detectors”, J. Appl Phys. 81, 6442 (1997).
  • 5. L. Thibaudeau, P. Bois, and J. Y. Duboz, “A self-consistent model for quantum well infrared photodetectors,” J. Appl Phys. 79, 446 (1996).
  • 6. B.K. Janousek, M.J. Daugherty, W.L. Bloss, M.L. Rosenbluth, M.J. O’Loughlin, H. Kanter, F.J. De Luccia, and L.E. Perry, “High-detectivity GaAs quantum well infrared detectors with peak responsivity at 8.2 μm”, J. Appl. Phys. 67, 7608 (1990).
  • 7. C.G. Bethea, B.F. Levine, V.O. Shen, R.R. Abbott, and S.J. Hseih, “10 μm GaAs/AlGaAs multiquantum well scanned array infrared imaging camera”, IEEE Trans. Electron. Devices 38, 1118-1123 (1991).
  • 8. L.J. Kozlowski, G. M. Williams, G.J. Sullivan, C.W. Farley, R.J. Andersson, J.K. Chen, D.T. Cheung, W.E. Tennant, and R.E. DeWames, “LWIR 128*128 GaAs/AlGaAs multiple quantum well hybrid focal plane array”, IEEE Trans. Electron. Devices 38, 1124-1130 (1991).
  • 9. A. Rogalski, “Infrared detectors: An overview”, Infra. Phys. & Tech. 43, 187-210 (2002).
  • 10. S.D. Gunapala and S.V. Bandara, “Significance of the first excited state position in quantum well infrared photodetectors”, Microelectronics Journal. 30, 1057-1065 (1999).
  • 11. J. Moon, S.S. Li, and J.H. Lee, “A high performance quantum well infrared photodetector using superlattice-coupled quantum wells for long wavelength infrared detection”, Infra. Phys. & Tech. 44, 229-234 (2003).
  • 12. V. Gueriaux, A. Nedelcu, and P. Bois, “Double barrier strained quantum well infrared photodetectors for the 3-5 μm atmospheric window”, J. Appl. Phys. 105, 114515 (2009).
  • 13. N. Imam, Elias N. Glytsis, T.K. Gaylord, K.-K. Choi, P.G. Newman, and L. Detter-Hoskin, “Quantum-Well Infrared Photodetector Structure Synthesis: Methodology and Experimental Verification” J. Quant. Elec. 39, 468 (2003).
  • 14. Y. Yang, H.C .Liu, W.Z. Shen, N. Li, W. Lu, Z.R. Wasilewski, and M. Buchanan,”Optimal Doping density for quantum well infrared photodetector performance”, J. Quant. Elec. 45, 623-628 (2009).
  • 15. S.D. Gunapala, B.F. Levine, L. Pfeiffer, and K. West, “Dependence of the performance of GaAs/AlGaAs quantum well infrared photodetectors on doping and bias”, J. Appl. Phys. 69, 6517 (1991).
  • 16. J. A. Cuesta, A. Snchez, and F. D. Adame, “Self-consistent analysis of electric field effects on Si -doped GaAs”, Semicon. Sci. Technol. 10, 1303-1309 (1995).
  • 17. C. Jirauschek, “Accuracy of transfer matrix approaches for solving the effective mass Schrodinger equation”, J. Quant. Elec. 45, 1059-1067 (2009).
  • 18. J. Davies, The Physics of Low−Dimensional Semiconductors An Introduction, Cambridge University Press, Cambridge, 1998.
  • 19. H. Schneider and H.C. Liu, Quantum Well Infrared Photodetectors Physics and Applications, Springer-Verlag, New York, 2007.
  • 20. E. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures”, IEEE Trans. Quant. Elec., 30, 2875 (1994).
  • 21. B.F. Levine, A. Zussmann, S.D. Gunapala, M.T. Asom, J.M. Kuo, and W.S. Hobson, “Photoexcited escape probability, optical gain, and noise in quantum well infrared photodetectors,” J. Appl. Phys. 72, 4429-4443 (1992).
  • 22. M.K. Das and N.R. Das, “On optimum designs of a RCE Si/SiGe/Si MQW photodetector for long wavelengh applications”, Opt. Quant. Electron. 41, 539-549 (2009).
  • 23. F.D. P. Alves, G. Karunasiri, N. Hanson, M. Byloos, H.C. Liu, A. Bezinger, and M. Buchanan, “NIR, MWIR and LWIR quantum well infrared photodetector using interband and intersubband transitions”, Infrared Phys. & Tech. 50, 182-186 (2007).
  • 24. J.R Meyer and I. Vurguftman, “Band parameters for III-V compound semiconductors and their alloys”, J. Appl. Phys. 89, 5815 (2001).
  • 25. K.M.S.V. Bandara, B.F. Levine, R.E. Leibenguth, and M.T. Asom, “Optical and transport properties of single quantum well infrared photodetectors”, J. Appl. Phys. 74, 1826 (1993).
  • 26. R. Quay, C. Moglestue, V. Palankovski, and S. Selberherr, “A temperature dependent model for the saturation velocity in semiconductor materials”, Proc. Material Sci. in Semicon. 3, 149-155 (2000).
  • 27. B.F. Levine, C.G. Bethea, K.K. Choi, J. Walker, and R.J. Malik, “Bound-to-extended absorption GaAs superlattice transport infrared detectors,” J. Appl. Phys. 64, 1591 (1988).
  • 28. C.H. Yang, J.M. Carlson−Swindle, S.A. Lyon, and J.M. Worlock, “Hot-electron ralaxation in GaAs quantum wells”, Phys. Rev. Lett. 55, 2359 (1985).
  • 29. B.F. Levine, C.G. Bethea, G. Hasnain, V.O. Shen, E. Pelve, R.R. Abbott, and S.J. Hsieh, “High sensitivity low dark current 10 μm GaAs quantum well infrared photodetector”, Appl. Phys. Lett. 56, 851 (1990).
  • 30. S.R. Andrews and B.A. Miller, “Experimental and theoretical studies of the performance of quantum-well infrared photodetectors”, J. Appl Phys. 70, 993 (1991).
  • 31. S.D. Gunapala, B.F. Levine, L. Pfeiffer, and K. West, “Dependence of the performance of GaAs/AlGaAs quantum well infrared photodetectors on doping and bias”, J. Appl Phys. 69, 6517 (1990).
  • 32. A. Zussman, B.F. Levine, J.M. Kuo, and J. de Jong, “Extended long-wavelength = 11-15-μm GaAs/AlxGa1-xAs quantum-well infrared photodetectors”, J. Appl Phys. 70, 5101 (1991).
  • 33. M.A. Kinch and A. Yariv, “Performance limitations of GaAs/AlGaAs infrared superlattices”, Appl. Phys. Lett. 55, 2093 (1989).
  • 34. E. Pelve, F. Beltram, C.G. Bethea, B.F. Levine, V.O. Shen, S.J. Hsieh, and R.R. Abbott, “Analysis of the dark current in doped-well multiple quantum well AlGaAs infrared photodetector”, J. Appl Phys. 66, 5656 (1989).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b322532a-a180-4ae7-b732-7e70aa95e4a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.