Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | No. 4 | 5--12
Tytuł artykułu

Synthetic biology in perspective

Treść / Zawartość
Warianty tytułu
PL
Biologia syntetyczna
Języki publikacji
EN
Abstrakty
EN
Towards the end of the XXth century, genetics expanded its scope not only in the field of structure and mechanisms of heredity, owing to progress in nucleic acid research including efficient sequencing and reassembly methods, but in acquiring precise tools which enable construction of new forms of life. Synthetic biology marks a radical change in practices of genetic manipulation from random mutations followed by selection, to design of specific DNA transformations attainable by application of genetic engineering methods. Mastering enzymatic gene splicing procedures and chemical synthesis of polynucleotides allowed perceiving macromolecules of life as “parts” or “bricks” amenable to specification, cataloguing and also fit for applications commensurable with the rules of engineering. The purpose of synthetic biology is to apply defined macromolecular constructs (abstracted from living matter or synthetic) as modules for construction of devices, sensors or switches, which can ultimately be integrated into self-sustained systems. Target applications of synthetic biology products ranges from biotechnological manufacturing of energy, fuels, chemicals, food and pharmaceuticals, through marker sensors and diagnostic devices, to various classes of therapeutics like antibodies, vaccines, probiotic microbes or modified immune cells. Thus, synthetic biology becomes an integral part of the prospective switch from present industrial reality to circular bioeconomy, which is the greatest challenge facing humanity.
PL
Na przełomie stuleci genetyka zyskała, w wyniku dogłębnych badań nad kwasami nukleinowymi, nowe specyficzne narzędzia modyfikacji materiału genetycznego, nieporównywalnie skuteczniejsze od wykorzystywanych uprzednio przypadkowych mutacji z następczą selekcją. W wyniku rozwoju różnych form biotechnologii, korzystających z narzędzi inżynierii genetycznej wyłoniła się (najpierw w formie postulatywnej) biologia syntetyczna, zakładając wykorzystanie funkcjonalnych biomakromolekuł jako elementów zamiennych (cegiełek lub podzespołów) do projektowania i konstrukcji większych modułów, systemów a wreszcie organizmów, spełniających z góry zadane założenia metaboliczne. Zadaniem biologii syntetycznej jest zapewnienie dostępności (docelowo w skali procesów przemysłowych) układów biologicznych zdolnych do korzystnego przetwarzania energii (szczególnie solarnej), transformacji składników biomasy w niskoemisyjne paliwa, półprodukty chemiczne, biopolimery oraz składniki żywności i leków. Inne zastosowania biologii syntetycznej koncentrują się w obszarze ochrony zdrowia; projektowane obecnie konstrukty będą spełniać role markerów i sensorów dla diagnostyki, probiotyków dla profilaktyki oraz przeciwciał, szczepionek a nawet celowo reprogramowanych komórek (np. układu immunologicznego) dla terapii lub medycyny rekonstrukcyjnej.
Wydawca

Rocznik
Tom
Strony
5--12
Opis fizyczny
Bibliogr. 55 poz., rys.
Twórcy
  • Łukasiewicz R&D Network, Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warszawa, g.grynkiewicz@ifarm.eu
Bibliografia
  • [1] G. Markowitz, D. Rosner, Deceit and denial; the deadly politics of industrial pollution, University of California Press and the Milbank Memorial Fund, Berkeley and New York, 2002.
  • [2] D. Levitan, Not a Scientist: How Politicians Mistake, Misrepresent and Utterly Mangle Science. New York: W.W. Norton & Co. 2017.
  • [3] C. Lofdahl, Environmental impacts of globalization and trade. Cambridge, MA: MIT Press, 2000.
  • [4] J.P. Schuldt, S.H. Konrath N. Schwarz, ‘‘Global warming’’ or ‘‘climate change’’? Whether the planet is warming depends on question wording, Publ. Opin. Quart., (2011), 75:115-124.
  • [5] Principles of toxicology environmental and industrial applications (P.L. Williams, R.C. Jones, S.M. Roberts, Eds.), J. Wiley & Sons, New York 2000.
  • [6] M. Valipour, S.M. Mousavi, R. Valipour, E. Rezaei, Air, water, and soil pollution study in industrial units using environmental flow diagram, J. Basic. Appl. Sci. Res., (2012) 2:12365-12372.
  • [7] K. Schwab, The Forth Industrial Revolution, (Geneva: World Economic Forum, 2016).
  • [8] B. Gajdzik, S. Grabowska, A. Wyciślik, Explanatory preview of directions of changes in development of industry 4.0, Polish Technical Review (2019), 1:5-9.
  • [9] D. Endy, Foundations for engineering biology, Nature, (2005), 438:449-453.
  • [10] S.A. Benner, A.M. Sismour, Synthetic biology, Nature Rev. Genetics, (2005), 6:533-543.
  • [11] Synthetic Biology - Metabolic Engineering, (H. Zhao, A.-P. Zeng, Eds.), Springer International Publishing AG, Cham CH 2018.
  • [12] Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions-Innovating for Sustainable Growth: A Bioeconomy for Europe; European Commission: Brussels, Belgium, 13 February 2013.
  • [13] Developing the global bioeconomy; technical, market, and environmental lessons from bioenergy, (P. Lamers, E. Searcy, J.R. Hess, H. Stichnothe, Eds.), Elsevier, Amsterdam 2016.
  • [14] Bioeconomy shaping the transition to a sustainable, biobased economy, (I. Lewandowski, Ed.), Springer International Publishing AG, Cham, Switzerland 2018.
  • [15] D.E. Cameron, C.J. Bashor, J.J. Collins, A brief history of synthetic biology, Nature Rev., Microbiology, (2014), 12:381-390.
  • [16] K.C. Nicolaou, T. Montagnon, Molecules that changed the world. Wiley-VCH; Weinheim: 2008.
  • [17] G.M. Whitesides, Reinventing chemistry, Angew. Chem. Int. Ed., (2015), 54:3196-3209.
  • [18] J.-M. Lehn, Perspectives in chemistry-aspects of adaptive chemistry and materials, Angew. Chem. Int. Ed., (2015), 54:3276-3289.
  • [19] K.C. Nicolaou, J.S. Chen, Classics in total synthesis III: further targets, strategies, methods, J. Wiley & Sons, Weiheim, 2011.
  • [20] Green techniques for organic synthesis and medicinal chemistry, (W. Zhang, B.W. Cue, Eds.), John Wiley & Sons, Ltd., Hoboken, NJ, USA 2018.
  • [21] E.J. Corey, X.-M. Chelg The logic of chemical synthesis, John Wiley & Sons, New York 1989.
  • [22] E.J. Corey, EJ. B. Czakó, L. Kürti, Molecules and Medicine. John Wiley & Sons, Hoboken, N.J. 2007.
  • [23] S. Szymkuć, E. P. Gajewska, T. Klucznik, K. Molga, P. Dittwald, M. Startek, M. Bajczyk, B. A. Grzybowski, Computer Assisted Synthetic Planning: The End of the Beginning, Angew. Chem., Int. Ed., (2016), 55:5904-5937.
  • [24] T. Badowski, K. Molga, B.A. Grzybowski, Selection of costeffective yet chemically diverse pathways from the networks of computer generated retrosynthetic plans, Chem. Sci., (2019), 10:4640-4651.
  • [25] A. Kornberg, Chemistry - the lingua franca of the medical and biological sciences, Chem. Biol., (1996), 3:3-5.
  • [26] T.L. Brown, H.E. LeMay, Jr., B.E. Bursten, C.J Murphy, P.M. Woodward, M.W. Stoltzfus, Chemistry the central science. - Thirteenth edition, Pearson, Boston MA, USA 2015.
  • [27] M. Eissen, J.O. Metzger, E. Schmidt, U. Schneidewind, 10 Years after Rio - concepts on the contribution of chemistry to a sustainable development, Angew. Chem. Int. Ed., (2002), 41:414-436.
  • [28] A. Kornberg, The two cultures: chemistry and biology, Biochemistry, (1987), 26:6888-6891.
  • [29] S. Leduc, La biologie synthetique, A. Poinat Paris 1912.
  • [30] T. Ellis, T. Adie, G.S. Baldwin, DNA assembly for synthetic biology; from parts to pathways and beyond, Integr. Biol., (2011), 3:109-118.
  • [31] Control of Gene Expression, A. Kohn and A. Shatkay (Eds.), Plenum Press, New York 1974 (Szybalski on SynBio: pp. 23-24, 404-405 , 411-412, and 415-417).
  • [32] W. Szybalski, A. Skalka, Nobel prizes and restriction enzymes, (1978), Gene, 4:181-182.
  • [33] W. Szybalski, Rewolucja genetyczna na przełomie XX i XXI wieku, (2000), Kosmos 49:385-393.
  • [34] H. Kitano, Systems biology: a brief overview, Science, (2002), 295:1662-1664.
  • [35] E.C. Butcher, E.L. Berg, E.J. Kunkel, Systems biology in drug discovery, Nature Biotechnol., (2004), 22: 1253-1259.
  • [36] Nanotechnology in Biology and Medicine; Methods, Devices, and Applications, (T. Vo-Dinh, Ed.), 2nd Ed., CRC Press Boca Raton FL, USA 2018.
  • [37] P.E.M. Purnick, R. Weiss, The second wave of synthetic biology: from modules to systems, Nature Rev., Molec. Cell Biol., (2009), 10:410-422.
  • [38] V.T. Soccol, A. Pandey, R.R. Resende , Current Developments in Biotechnology and Bioengineering: Human and Animal Health Applications, Elsevier BV, Amsterdam 2017.
  • [39] J.C. Venter, Life at the speed of light, Little Brown, London 2013.
  • [40] M. Porcar, J. Pereto, Synthetic biology; from iGEM to the artificial cell, Springer, Dordrecht 2014.
  • [41] R. Breitling, E. Takano, T.S. Gardner, Judging synthetic biology risks, Science (2015), 347(6218): 107.
  • [42] Ambivalences of creating life; societal and philosophical dimensions of synthetic biology (K. Hagen, M. Engelhard, G. Toepfler, Eds.), Springer International Publishing, Cham, Switzerland 2016.
  • [43] J.W. Paul III, Y. Qi, CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects. Plant Cell Rep., (2016), 35:1417-1427.
  • [44] T. Zimny, S. Sowa, A. Tyczewska, T. Twardowski, Certain new plant breeding techniques and their marketability in the context of EU GMO legislation - recent developments, New Biotechnol., (2019), 51:49-56.
  • [45] A. Aguilar, T. Twardowski, R. Wohlgemuth, Bioeconomy for Sustainable Development, Biotechnol. J., (2019), 14:1800638.
  • [46] Bioeconomy shaping the transition to a sustainable, biobased economy, (I. Lewandowski, Ed.), Springer International Publishing AG, Cham, Switzerland 2018.
  • [47] Directed enzyme evolution; screening and selection methods, (F.H. Arnold, G. Georgion, Eds.), Humana Press Inc., Totowa NJ, USA 2003.
  • [48] G. Grynkiewicz, P. Borowiecki, Nowe zastosowania biotechnologii w obszarze syntez farmaceutycznych, Przemysł Chem., (2019), 98:434-440.
  • [49] C.J. Paddon, J.D. Keasling, Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development, Nat. Rev. Microbiol., (2014), 12:355-362.
  • [50] E.-J. Kim, C.-H. Wu, M.W.W. Adams, Y.-H.P. Zhang, Exceptionally high rates of biological hydrogen production by biomimetic in vitro synthetic enzymatic pathways, Chem. Eur. J., (2016), 22:16047-16051.
  • [51] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells, Chem. Rev., (2010), 110:6446-6473.
  • [52] Synthetic biology, (M. Schmidt, A. Kelle, A. Ganguli-Mitra, H. Vriend, Eds.), Springer Science + Business Media B.V., 2010.
  • [53] D. Chakravarti, W.W. Wong, Synthetic biology in cell-based cancer immunotherapy, Trends in Biotechnology, (2015), 33:449-461.
  • [54] C.-Y. Wu, L.J. Rupp, K.T. Roybal, W.A. Lim, Synthetic biology approaches to engineer T cells, Curr. Opin. in Immunol., (2015), 35:123-130.
  • [55] C. Gilbert, T. Ellis, Biological engineered living materials: growing functional materials with genetically programmable properties, ACS Synth. Biol., (2019), 8:1-15.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b2c64ca7-1757-495b-9bb7-c644d9a43fe7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.