Warianty tytułu
Konferencja
Solid Mechanics Conference (SolMech 2018) (41 ; 27–31.08. 2018 ; Warsaw, Poland)
Języki publikacji
Abstrakty
Modeling of anisotropic behavior as well as hardening behavior based on micromechanical quantities in combination with a spectral solver is the focus of this study. A deep drawing steel as well as two different aluminum alloys are investigated. Prediction capabilities of the proposed modeling strategy are discussed and the benefits of the micromechanical model are highlighted. Further, a comparison of the crystal plasticity (CP) results with the well established macroscopic model YLD2000-2d underlines the importance of the CP as a complementary modeling technique to the macroscopic modeling. Both models – the microscopic as well as the macroscopic – are validated on experimental data mainly gained from uniaxial and biaxial tests. In the second part of this study, strong inhomogeneous microstructures are investigated from a modeling point of view. For this purpose, a Hall–Petch phenomenological model is implemented in the CP open-source code DAMASK to take the grain size effects into account. Appropriate combinations of the grain sizes in a bimodal microstructure are presented in order to increase the strength as well as ductility of a generic aluminium alloy. The proposed numerical strategy of coupling the CP and efficient FFT-based spectral solver supports the development of new materials in an optimal way.
Czasopismo
Rocznik
Tom
Strony
489--505
Opis fizyczny
Bibliogr. 44 poz., rys. kolor.
Twórcy
autor
- Inspire AG, Institute of Virtual Manufacturing (inspire-ivp), Tannenstrasse 3, 8092 Zurich, Switzerland, berisha@inspire.ethz.ch
autor
- ETH Zurich, Institute of Virtual Manufacturing (ivp), Tannenstrasse 3, 8092 Zurich, Switzerland
autor
- ETH Zurich, Institute of Virtual Manufacturing (ivp), Tannenstrasse 3, 8092 Zurich, Switzerland
autor
- ETH Zurich, Institute of Virtual Manufacturing (ivp), Tannenstrasse 3, 8092 Zurich, Switzerland
autor
- Novelis Switzerland SA, Route des Laminoirs 15, 3960 Sierre, Switzerland
autor
- Novelis Switzerland SA, Route des Laminoirs 15, 3960 Sierre, Switzerland
autor
- Novelis Switzerland SA, Route des Laminoirs 15, 3960 Sierre, Switzerland
Bibliografia
- 1. F. Barlat, J.J. Gracio, M.-G. Lee, E.F. Rauch, G. Vincze, An alternative to kinematic hardening in classical plasticity, International Journal of Plasticity, 27, 9, 1309–1327, 2011, DOI: 10.1016/j.ijplas.2011.03.003.
- 2. D. Banabic, H.-J. Bunge, K. Pöhlandt, A.E. Tekkaya, Formability of Metallic Materials, Engineering Materials, Springer, Berlin, Heidelberg, 2000, DOI: 10.1007/978-3-662-04013-3.
- 3. D. Banabic, Sheet Metal Forming Processes, Springer, Berlin, Heidelberg, 2010, DOI: 10.1007/978-3-540-88113-1.
- 4. O. Cazacu, B. Revil-Baudard, N. Chandola, Plasticity-damage couplings: from single crystal to polycrystalline materials, 1st ed., Vol. 253 of Solid Mechanics and Its Applications, Springer International Publishing, Cham, 2019, DOI: 10.1007/978-3-319-92922-4.
- 5. F. Barlat, J. Brem, J. Yoon, K. Chung, R. Dick, D. Lege, F. Pourboghrat, S.-H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets – Part 1: theory, International Journal of Plasticity, 19, 9, 1297–1319, 2003, DOI: 10.1016/S0749-6419(02)00019-0.
- 6. J. Chaboche, A review of some plasticity and viscoplasticity constitutive theories, International Journal of Plasticity, 24, 10, 1642–1693, 2008, DOI: 10.1016/j.ijplas.2008.03.009.
- 7. L. Zhu, J. Lu, Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution, International Journal of Plasticity, 30–31, 166–184, 2012, DOI: 10.1016/j.ijplas.2011.10.003.
- 8. M. Shakoori Oskooie, H. Asgharzadeh, H. Kim, Microstructure, plastic deformation and strengthening mechanisms of an Al–Mg–Si alloy with a bimodal grain structure, Journal of Alloys and Compounds, 632, 540–548, 2015, DOI: 10.1016/j.jallcom.2015.01.229.
- 9. J. Ferguson, M. Tabandeh-Khorshid, P.K. Rohatgi, K. Cho, C.-S. Kim, Predicting tensile and compressive mechanical properties of bimodal nano-aluminum alloys, Scripta Materialia, 72–73, 13–16, 2014, DOI: 10.1016/j.scriptamat.2013.10.005.
- 10. A.B. Spierings, K. Dawson, M. Voegtlin, F. Palm, P.J. Uggowitzer, Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting, CIRP Annals, 65, 1, 213–216, 2016, DOI: 10.1016/j.cirp.2016.04.057.
- 11. A.M. Esawi, N.T. Aboulkhair, Bi-modally structured pure aluminum for enhanced strength and ductility, Materials & Design, 83, 493–498, 2015, DOI: 10.1016/j.matdes.2015.06.062.
- 12. H.S. Arora, A. Ayyagari, J. Saini, K. Selvam, S. Riyadh, M. Pole, H.S. Grewal, S. Mukherjee, High tensile ductility and strength in dual-phase bimodal steel through stationary friction stir processing, Scientific Reports, 9, 1, Article number: 1972, 2019, DOI: 10.1038/s41598-019-38707-3.
- 13. W. Yang, H. Ding, Y. Mu, J. Li, W. Zhang, Achieving high strength and ductility in double-sided friction stir processing 7050-T7451 aluminum alloy, Materials Science and Engineering: A, 707, 193–198, 2017, DOI: 10.1016/j.msea.2017.09.028.
- 14. D. Orlov, Y. Todaka, M. Umemoto, N. Tsuji, Formation of bimodal grain structures in high purity Al by reversal high pressure torsion, Scripta Materialia, 64, 6, 498–501, 2011, DOI: 10.1016/j.scriptamat.2010.11.020.
- 15. N. Tsuji, Y. Saito, S.-H. Lee, Y. Minamino, ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials, Advanced Engineering Materials, 5, 5, 338–344, 2003, DOI: 10.1002/adem.200310077.
- 16. A. Pineau, A. Amine Benzerga, T. Pardoen, Failure of metals III: fracture and fatigue of nanostructured metallic materials, Acta Materialia, 107, 508–544, 2016, DOI: 10.1016/j.actamat.2015.07.049.
- 17. F. Roters, P. Eisenlohr, C. Kords, D. Tjahjanto, M. Diehl, D. Raabe, DAMASK: the Düsseldorf Advanced Material Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver, Procedia IUTAM, 3, 3–10, 2012, DOI: 10.1016/j.piutam.2012.03.001.
- 18. J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycristalline materials, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 348, 1652, 101–127, 1976, DOI: 10.1098/rspa.1976.0027.
- 19. F. Roters, P. Eisenlohr, T.R. Bieler, D. Raabe, Crystal Plasticity Finite Element Methods, 1st ed., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2010, DOI: 10.1002/9783527631483,
- 20. R.K. Verma, P. Biswas, Crystal plasticity-based modelling of grain size effects in dual phase steel, Materials Science and Technology 32, 15, 1553–1558, 2016, DOI: 10.1080/02670836.2015.1131959.
- 21. S. Hirsiger, B. Berisha, P. Hora, On the prediction of yield loci based on crystal plastictiy models and the spectral solver framework, Journal of Physics: Conference Series, NUMISHEET, 2018, 1063, 2018.
- 22. P. Eisenlohr, M. Diehl, R. Lebensohn, F. Roters, A spectral method solution to crystal elasto-viscoplasticity at finite strains, International Journal of Plasticity, 46, 37–53, 2013, DOI: 10.1016/j.ijplas.2012.09.012.
- 23. P. Shanthraj, P. Eisenlohr, M. Diehl, F. Roters, Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials, International Journal of Plasticity, 66, 31–45, 2015, DOI: 10.1016/j.ijplas.2014.02.006.
- 24. B. Berisha, C. Raemy, C. Becker, M. Gorji, P. Hora, Multiscale modeling of failure initiation in a ferritic-pearlitic steel, Acta Materialia 100, 191–201, 2015, DOI: 10.1016/j.actamat.2015.08.035.
- 25. P. Eisenlohr, F. Roters, Selecting a set of discrete orientations for accurate texture reconstruction, Computational Materials Science, 42, 4, 670–678, 2008, DOI: 10.1016/j.commatsci.2007.09.015.
- 26. C. Raemy, B. Berisha, P. Hora, Determination of yield loci based on CP-Models for DC05, 8th Forming Technology Forum (FTF 2015), pp. 135–138, 2015.
- 27. S. Hirsiger, B. Berisha, P. Hora, Determination of yield loci based on CP-Models for AA6016, Internal Report, Institute of Virtual Manufacturing-ETH Zurich, 2017.
- 28. P. Peters, Yield functions taking into account anisotropic hardening effects for an improved virtual representation of deep drawing processes, Ph.D. thesis, ETH Zuerich, 2015, DOI: 10.3929/ethz-a-010503932.
- 29. M. Gorji, B. Berisha, N. Manopulo, P. Hora, Effect of through thickness strain distribution on shear fracture hazard and its mitigation by using multilayer aluminum sheets, Journal of Materials Processing Technology, 232, 19–33, 2016, DOI: 10.1016/j.jmatprotec.2016.01.014.
- 30. F. Barlat, Y. Jeong, J.J. Ha, C. Tomé, M.G. Lee, W. Wen, Advances in constitutive modeling of plasticity for forming applications, Key Engineering Materials, 725, 3–14, 2016, DOI: 10.4028/www.scientific.net/KEM.725.3.
- 31. F. Barlat, Advanced constitutive modeling for application to sheet forming, Journal of Physics: Conference Series, 1063, Article number: 012002, 2018, DOI: 10.1088/1742-6596/1063/1/012002.
- 32. P.V. Liddicoat, X.-Z. Liao, Y. Zhao, Y. Zhu, M.Y. Murashkin, E.J. Lavernia, R.Z. Valiev, S.P. Ringer, Nanostructural hierarchy increases the strength of aluminium alloys, Nature Communications, 1, 1, Article number: 63, 2010, DOI: 10.1038/ncomms1062.
- 33. Z. Zheng, J. Liu, Y. Gao, Achieving high strength and high ductility in 304 stainless steel through bi-modal microstructure prepared by post-ECAP annealing, Materials Science and Engineering: A, 680, 426–432, 2017, DOI: 10.1016/j.msea.2016.11.004.
- 34. Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature, 419, 6910, 912–915, 2002, DOI: 10.1038/nature01133.
- 35. E. Ma, T. Zhu, Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals, Materials Today, 20, 6, 323–331, 2017, DOI: 10.1016/j.mattod.2017.02.003.
- 36. A.S. Khan, J. Liu, A deformation mechanism based crystal plasticity model of ultrafinegrained/nanocrystalline FCC polycrystals, International Journal of Plasticity, 86, 56–69, 2016, DOI: 10.1016/j.ijplas.2016.08.001.
- 37. R.I. Babicheva, S.V. Dmitriev, L. Bai, Y. Zhang, S.W. Kok, G. Kang, K. Zhou, Effect of grain boundary segregation on the deformation mechanisms and mechanical properties of nanocrystalline binary aluminum alloys, Computational Materials Science, 117, 445–454, 2016, DOI: 10.1016/j.commatsci.2016.02.013.
- 38. M. Ruppert, C. Schunk, D. Hausmann, H.W. Höppel, M. Göken, Global and local strain rate sensitivity of bimodal Al-laminates produced by accumulative roll bonding, Acta Materialia, 103, 643–650, 2016, DOI: 10.1016/j.actamat.2015.11.009.
- 39. T.J. Rupert, The role of complexions in metallic nano-grain stability and deformation, Current Opinion in Solid State and Materials Science, 20, 5, 257–267, 2016, DOI: 10.1016/j.cossms.2016.05.005.
- 40. H. Yu, K. Tieu, C. Lu, Advanced rolling technologies for producing ultrafinegrain/nanostructured alloys, Procedia Engineering, 81, 96–101, 2014, DOI: 10.1016/j.proeng.2014.09.133.
- 41. G. Wilde, Physical metallurgy of nanocrystalline metals, [in:] Physical Metallurgy, D. Laughlin, K. Hono [eds], pp. 2707–2805, Elsevier Science Ltd., Oxford, 2014, DOI: 10.1016/B978-0-444-53770-6.00026-5.
- 42. Y. Estrin, K. Rhee, R. Lapovok, P.F. Thomson, Mechanical behavior of alloy AA6111 processed by severe plastic deformation: Modeling and experiment, Journal of Engineering Materials and Technology, 129, 3, 380–389, 2007, DOI: 10.1115/1.2744396.
- 43. R. Lapovok, I. Timokhina, P. McKenzie, R. O’Donnell, Processing and properties of ultrafine-grain aluminium alloy 6111 sheet, Journal of Materials Processing Technology, 200, 1–3, 441–450, 2008, DOI: 10.1016/j.jmatprotec.2007.08.083.
- 44. F. Bachmann, R. Hielscher, H. Schaeben, Texture analysis with MTEX – free and open source software toolbox, Solid State Phenomena, 160, 63–68, 2010, DOI: 10.4028/www.scientific.net/SSP.160.63.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b2c540d7-4dc2-4c2f-8163-884deca44611