Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | Vol. 69, no. 2 | 539--546
Tytuł artykułu

Linking static and dynamic mechanical properties for metamorphic rocks from Austria including their anisotropic efect

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The derivation of geomechanical properties from petrophysical/geophysical data is not only of great importance in the oil industry but also in mining, geothermal projects and tunnelling, for reduction of costs and to improve security. For the oil industry and geothermal sector, it is mainly important for drilling rate and the stability of the borehole and, as a result, the economic factor. A key issue is that geomechanical properties, which can support a better planning of a project, cannot be measured in the borehole or on the surface directly. In this study, the focus is put on anisotropic efects on the correlation between static and dynamic properties, which is neglected in most studies but important because values can vary extremely. Therefore, measurements in the geotechnical laboratory of compressional and shear wave velocity during uniaxial compression strength test were taken. Additionally, typical properties like bulk and grain density as well as porosity were determined too. Diferent samples (carbonate–silica schist, marble and phyllite) from the "Zentrum am Berg"-research tunnelling centre at the "Erzberg" in Austria were used. Shown are correlations between uniaxial compression strength and compressional wave velocity as well as for static and dynamic Young’s modulus including their anisotropic efect. The results are promising and provide an opportunity for further applications on log data.
Wydawca

Czasopismo
Rocznik
Strony
539--546
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Montanuniversitaet Leoben, Erzherzog-Johann Strasse 3, 8700 Leoben, Austria
Bibliografia
  • 1. Ajalloeian R, Lashkaripour GR (2000) Strength anisotropies in mudrocks. Bull Eng Geol Environ 59:195–199. https://doi.org/10.1007/s100640000055
  • 2. Al-Harthi AA (1998) Effect of planar structures on the anisotropy of Ranyah sandstone Saudi Arabia. Eng Geol 50:49–57. https://doi.org/10.1016/S0013-7952(97)00081-1
  • 3. Altindag R (2012) Correlation between P-wave velocity and some mechanical properties for sedimentary rocks. J S Afr Inst Min Metal 112:229–237
  • 4. Bhuiyan MH, Holt RM, Fjaer E (2013) Anisotropic parameters of dry and saturated sand under stress, SEG Annual Meeting, Houston, pp 2836–2840
  • 5. Budiansky B, O’Connell RJ (1976) Elastic moduli of a cracked solid. Int J Solids Struct 12:81–97. https://doi.org/10.1016/0020-7683(76)90044-5
  • 6. Butel N, Hossack A, Kizil MS (2014) Prediction of in situ rock strength using sonic velocity, 14th Coal Operator’s Conference, University of Wollongong, 89–102
  • 7. Chang Ch, Zoback MD, Khaksar A (2006) Empirical relations between rock strength and physical properties in sedimentary rocks. J Petrol Sci Eng 51:223–237. https://doi.org/10.1016/j.petrol.2006.01.003
  • 8. Chen H, Hu Z-Y (2001) A preliminary study on the relationship between engineering properties and uniaxial compressive strength of weak sandstones. West Pac Earth Sci 1:297–338
  • 9. Fjaer E, Holt RM, Horsrud P, Raaen AM, Rines R (2008) Petroleum related rock mechanics. Elsevier Science Publications, Amsterdam
  • 10. Gegenhuber N, Kienler M (2017) Improved petrographic coded model and its evaluation to determine a thermal conductivity log. Acta Geophys 65:103–118. https://doi.org/10.1007/s11600-017-0010-4
  • 11. Gegenhuber N, Steiner-Luckabauer C (2012) Vp/Vs Automatic Picking of Ultrasonic Measurements and their Correlation of Petrographic Coded Carbonates from Austria, 74th EAGE Conference & Exhibition, Copenhagen.
  • 12. Gegenhuber N, Schifko Th, Pittino G (2017) Petrographic coded model concept for the correlation between geomechanical and elastic properties and its application on log data. Austrian J Earth Sci 110(1):101–108. https://doi.org/10.17738/ajes.2017.0007
  • 13. Horsrud P (2001) Estimating mechanical properties of shale from empirical correlations. SPE Drill Complet 16:68–73. https://doi.org/10.2118/56017-PA
  • 14. Jabbar MA (2011) Correlations of point load index and pulse velocity with the uniaxial compressive strength for rocks. J Eng 4(17):992–1006
  • 15. Jiang J, Sun J-Z (2011) Comparative study of static and dynamic parameters of rock for the Xishan Rock Cliff Statue. J Zhejiang Univ Sci A 12:771–781. https://doi.org/10.1631/jzus.A1100003
  • 16. Karakul H, Ulusay R, Isik NS (2010) Empirical models and numerical analysis for assessing strength anisotropy based on block punch index and uniaxial compression tests. Int J Rock Mech Min Sci 47:657–665. https://doi.org/10.1016/j.ijrmms.2010.03.006
  • 17. Karami, M., Abrah, B., Dayani, S., Framarzi, L. and Nik, M.G., 2012, Empirical Correlations between Static and Dynamic Properties of intact rock. 7th Asian Rock Mechanics Symposium, Seoul, South Korea.
  • 18. King MS (1983) Static and dynamic elastic properties of rocks from the Canadian Shield. Int J Rock Mech Min Sci 20(5):237–241. https://doi.org/10.1016/0148-9062(83)90004-9
  • 19. Memarian H (2006) Prediction of mechanical parameters of rock, using shear wave travel time, Geomodel 2006 - 8th EAGE science and applied research conference on oil and gas geological exploration and development, cp-218–00113, doi: https://doi.org/10.3997/2214-4609.201404029.
  • 20. Mody FK, Tare U, Wang GG (2008) Application of Geomechanics Technology in Borehole Stability Reduces Well Construction Costs, ARMA 08–25542nd US Rock Mechanics Symposium and 2nd U.S.-Canada Rock Mechanics Symposium, San Francisco.
  • 21. Najibi AR, Ghafoori M, Lashkaripour GR, Asef MR (2015) Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestone, two main oil reservoirs in Iran. J Petrol Sci Eng 126:78–82. https://doi.org/10.1016/j.petrol.2014.12.010
  • 22. Nasseri MHB, Rao KS, Ramamurthy T (2003) Anisotropic strength and deformational behaviour of Himalayan schists. Int J Rock Mech Min Sci 40:3–23. https://doi.org/10.1016/S1365-1609(02)00103-X
  • 23. Nes OM, Fajer E, Tronvoll J, Kristianse TG, Horsrund P (2005) Drilling Time reduction through an integrated rock mechanics analysis, SPE-92531-MS, SPE/IADC, Drilling Conference, Amsterdam, doi: https://doi.org/10.2118/92531-MS
  • 24. Nygaard R, Hareland G (2007) Application of rock strength in drilling evaluation, SPE 106573-MS, SPE Latin American and Caribbean Petroleum Engineering Conference held in Buenos Aires, Argentina.
  • 25. Oyler DC, Mark CH, Molinda GM (2008) Correlation of Sonic Travel Time to the Uniaxial Compressive Strength of U.S. Coal Measure Rocks, International Conference on Ground Control in Mining.
  • 26. Pittino G, Gegenhuber N, Reiter F, Fröhlich R (2015) Axiale Prüfkörperdurchschallung während einaxialer Druckversuche. Berg- und Hüttenmännische Monatshefte 160:565–571. https://doi.org/10.1007/s00501-015-0423-9
  • 27. Saroglou H, Marinos P, Tsiambaos G (2004) The anisotropic nature of selected metamorphic rocks from Greece. J S Afr Inst Min Metal 217–222.
  • 28. Schoen JH (2015) Physical properties of rocks—fundamentals and principles of petrophysics. Elsevier, Pergamon, p 512
  • 29. Tokle K, Horsrund P, Bratli RK (1986) Prediction Uniaxial compressive strength from log parameters, SPE 15645-MS, SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, doi: https://doi.org/10.2118/15645-MS
  • 30. van Heerden WL (1987) General Relations between static and dynamic moduli of rocks. Int J Rock Mech Min Sci Geomech 24:381–385. https://doi.org/10.1016/0148-9062(87)92262-5
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b2854183-25b7-4409-8a52-a42ed4f2ec4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.