Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Nr 53 | 113--127
Tytuł artykułu

Approximation of fixed points of some classes of nonlinear mappings

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We introduce a new class of nonlinear mappings, the class of generalized strongly successively Φ- hemicontractive mappings in the intermediate sense and prove the convergence of Mann type iterative scheme with errors to their fixed points. This class of nonlinear mappings is more general than those defined by several authors. In particular, the class of generalized strongly successively Φ- hemicontractive mappings in the intermediate sense introduced in this study is more general than the class defined by Liu et al. [Z. Liu, J. K. Kim and K. H. Kim, Convergence theorems and stability problems of the modified Ishikawa iterative sequences for strictly successively hemicontractive mappings, Bull. Korean Math. Soc. 39 (2002), No. 3, pp. 455-469].
Wydawca

Rocznik
Tom
Strony
113--127
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
Bibliografia
  • [1] Alber Ya.I., Chidume C.E., Zegeye H., Regularization of nonlinear ill-posed equations with accretive operators, Fixed Point Theory and Applications, 1(2005), 11-33.
  • [2] Bruck R.E., Kuczumow T., Reich S., Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math., 65(1993), 169-179.
  • [3] Chang S.S., Some results for asymptotically pseudocontractive mappings and asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 129(2001), 845-853.
  • [4] Chang S.S., On Chidume’s open questions and approximation solutions of multi-valued strongly accretive mapping equation in Banach spaces, J. Math. Anal. Appl., 216(1997), 94-111.
  • [5] Chang S.S., Cho Y.J., Zhou H., Iterative methods for nonlinear operator equations in Banach spaces, Nova Science Publishers, Inc. Huntington, NY, ISBN: 1-59033-170-2, 2002, xiv+459pp.
  • [6] Chang S.S., Cho Y.J., Kim J.K., Some results for uniformly L-Lipschitzian mappings in Banach spaces, Appl. Math. Lett., 22(2009), 121-125.
  • [7] Chidume C.E., Chidume C.O., Convergence theorems for fixed points of uniformly continuous generalized Φ-hemi-contractive mappings, J. Math. Anal. Appl., 303(2005), 545-554.
  • [8] Chidume C.E., Osilike M.O., Fixed point iterations for strictly hemicontractive maps in uniformly smooth Banach spaces, Numer. Funct. Anal. Optimiz., 15(1994), 779-790.
  • [9] Goebel K., Kirk W.A., A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35(1972), 171-174.
  • [10] Gu F., Convergence theorems for Φ-pseudocontractive type mappings in normed linear spaces, Northeast Math. J., 17(3)(2001), 340-346.
  • [11] Huang Z., Equivalence theorems of the convergence between Ishikawa and Mann iterations with errors for generalized strongly successively Φ-pseudocontrative mappings without Lipschitzian assumptions, J. Math. Anal. Appl. , 329(2007), 935-947.
  • [12] Kim J.K., Sahu D.R., Nam Y.M., Convergence theorem for fixed points of nearly uniformly L-Lipschitzian asymptotically generalized Φ-hemicontractive mappings, Nonlinear Analysis, 71(2009), 2833-2838.
  • [13] Liu Z., Kim J.K., Kim H.K., Convergence theorems and stability problems of the modified Ishikawa iterative sequences for strictly successively hemicontractive mappings, Bull. Korean Math. Soc., 39(2002), 455-469.
  • [14] Moore C., Nnoli B.V., Iterative solution of nonlinear equations involving set-valued uniformly accretive operators, Comput. Math. Appl., 42(2001), 131-140.
  • [15] Ofoedu E.U., Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseudocontractive mapping in a real Banach space, J. Math. Anal. Appl., 321(2006), 722-728.
  • [16] Olaleru J.O., Mogbademu A.A., Approximation of fixed points of strongly successively pseudocontractive maps in Banach space, International Journal of Computational and Applied Mathematics, 7(2)(2012), 121-132.
  • [17] Olaleru J.O., Okeke G.A., Strong convergence theorems for asymptotically pseudocontractive mappings in the intermediate sense, British Journal of Mathematics & Computer Science, 2(3)(2012), 151-162.
  • [18] Osilike M.O., Aniagbosor S.C., Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Computer Modelling, 32(2000), 1181-1191.
  • [19] Qin X., Cho S.Y., Kim J.K., Convergence theorems on Asymptotically pseudocontractive mappings in the intermediate sense, Fixed Point Theory and Applications, Vol. 2010, Article ID 186874, 14 pages, doi: 10.1155/2010/186874.
  • [20] Sahu D.R., Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces, Comment. Math. Univ. Carolin, 46(4)(2005), 653-666.
  • [21] Sahu D.R., Beg I., Weak and strong convergence of fixed points of nearly asymptotically nonexpansive mappings, Internat. Modern Math., 3(2)(2008) 135-151.
  • [22] Sahu D.R., Xu H.-K., Yao J.-C., Asymptotically strict pseudocontractive mappings in the intermediate sense, Nonlinear Analysis, 70(2009) 3502-3511.
  • [23] Zegeye H., Robdera M., Choudhary B., Convergence theorems for asymptotically pseudocontractive mappings in the intermediate sense, Com-puters and Mathematics with Applications, 62(2011), 326-332.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b23293ea-2777-4304-b56b-6b6479bfd2f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.