Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 1 | 129--141
Tytuł artykułu

Accelerations Caused by Underwater Explosions on the Naval Gun Foundation

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The manuscript analyzes the impact of a non-contact underwater explosion on the foundation of a 35 mm naval cannon mounted on board a Project 258 minehunter. The finite element method was used to complete the task. Cole's empirical formulas were used to describe the distribution of the pressure wave from the explosion of the TNT charge in water as a function of distance, time, and mass. The hull geometry was reflected based on technical documentation as a shell structure reinforced with beam-bar elements. Devices with large weights were represented as rigid bodies. Simplifications were used to minimize the number of degrees of freedom. The construction of ship's hull is made of non-magnetic austenitic steel. The dynamic characteristics of this steel were determined based on static and dynamic tensile tests. The Johnson-Cook constitutive model was used to describe the material properties of steel. As part of the work, the impact resistance study of marine structures was presented, how it is defined by the existing regulations in the Polish Navy was considered, and the scope of their applicability was given. The scientific innovation of the presented work consists of checking and specifying the guidelines for designing and constructing warships.
Wydawca

Rocznik
Strony
129--141
Opis fizyczny
Bibliogr. 37 poz., fig., tab.
Twórcy
  • Mechanical and Electrical Engineering Department, Polish Naval Academy, Gdynia, Poland, bsztur@gmail.com
Bibliografia
  • 1. Goroch, O.J.; Zbigniew, G.; Leszek, C. Development of ammunition with unconventional applications. Adv. Sci. Technol. Res. J. 2020, 14, 137-144, doi:10.12913/22998624/115515.
  • 2. Two Kormorans will enter service in 2022 (in Polish). Available online: https://defence24.pl/sily-zbrojne/dwa-kormorany-wejda-do-sluzby-jeszcze-w-2022-roku (accessed on 23 November 2022).
  • 3. OSU-35K ship weapon system on ORP Mewa (in Polish). Available online: https://www.portalmorski.pl/wiadomosci/bezpieczenstwo-granice/52356-okretowy-system-uzbrojenia-osu-35k-na-orp-mewa (accessed on 23 November 2022).
  • 4. 35 mm KDA naval automatic cannon with a ship-mounted fire control system using the integrated AGS-158 tracking head made in the naval version with a fire control station (in Polish). Akademia Marynarki Wojennej: Gdynia, 2018;
  • 5. Szturomski B., Milewski S., Kiciński R. Strength analysis of the marine weapon’s construction. Naše More, 2021.
  • 6. Checking the requirements for resistance to mechanical damage (in Polish), Armament Inspectorate, Methodology No. 12, 2017.
  • 7. STANAG 4137 (Classified). Standard underwater explosion test for operational surface ships and crafts, 1976.
  • 8. 35 mm automatic cannon. https://www.hsw.pl/i/fmfiles/kda/hsw-kda.pdf
  • 9. Barnat, W. Numerical investigation of initial conditions influence on value of pressure impulse acting on special vehicle during acceptance testing. Adv. Sci. Technol. Res. J. 2017, 11, 125-132, doi:10.12913/22998624/71179.
  • 10. Requirements for the development of the model of the 35 mm naval cannon, which is an integral part of the osu ship armament system (in Polish). Development Project No. 0046 03 001, 2017.
  • 11. OSU-35K ship weapon system, PIT-RADWAR (in Polish). Available online: https://www.pitradwar.com/oferta/391,system-armaty-morskiej-kal-35-mm-am-35# (accessed on 23 November 2022).
  • 12. Kiciński R., Jurczak W. Mechanical properties of welded joint of 1.3964 steel for computer aided engineering (CAE) purposes. Scientific Journal of Polish Naval Academy 2020, 220.
  • 13. Metalcor GmbH , Essen, Germany Metalcor 1.3964, Alloy 50 - Product Catalog.
  • 14. Szturomski, B. Modeling the effect of the underwater explosion to hull board in a numberic concept (in Polish). Akademia Marynarki Wojennej. Gdynia, 2016.
  • 15. Cole R.H. Underwater Explosions. Princeton University Press: New Jersey, 1948.
  • 16. Cudny K., Powierża Z. Selected issues of ship impact resistance (in Polish). Gdynia, 1978.
  • 17. Grządziela A. Model of impact underwater detonation. Journal of Kones 2011, 18, 145-152.
  • 18. Kiciński R., Szturomski B. Pressure wave caused by trinitrotoluene (TNT) underwater explosion – short review. Applied Sciences 2020, 10, 3433, doi:10.3390/app10103433.
  • 19. Li J., Rong J. Bubble and free surface dynamics in shallow underwater explosion. Ocean Engineering 2011, 38, 1861–1868, doi:10.1016/j.oceaneng.2011.09.031.
  • 20. Geers T.L., Hunter K.S. An integrated wave-effects model for an underwater explosion bubble; boulder, 2002.
  • 21. Lance R.M., Bass C.R. Underwater blast injury: A review of standards. Diving Hyperb Med 2015, 45, 190-199.
  • 22. Szturomski, B. The impact of non-contact underwater explosions on the ship’s hull in FEM approach, 2021.
  • 23. Reid W.D. The response of surface ships to underwater explosions. General document, DSTO; DSTO Aeronautical and Maritime Research Laboratory, Melbourne, Vic, 1996.
  • 24. Szturomski, B. Dynamic characteristics of high quality steel in johnson-cook’s model for fast processes simulation in CAE programs. SSP 2015, 236, 31-38, doi:10.4028/www.scientific.net/SSP.236.31.
  • 25. Kiciński R., Szturomski B., Jurczak W. Determination of material characteristics necessary for modelling of marine structures exposed to smallcalibre bullet. Journal of KONES 2019, 26, 105-111, doi:10.2478/kones-2019-0096.
  • 26. Johnson G.R., Cook W.H. A constitutive model and data for metals subjected to large strains, high strain rates. Proceedings of the 7th International Symposium on Ballistics, 2009.
  • 27. Johnson G.R., Cook W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics 1985, 21, 31-48, doi:10.1016/0013-7944(85)90052-9.
  • 28. Szturomski B., Kiciński R. Material properties of HY 80 steel after 55 years of operation for FEM applications. Materials 2021, 14, 4213, doi:10.3390/ma14154213.
  • 29. Bao Y., Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space, 2004. doi:10.1016/J.IJMECSCI.2004.02.006.
  • 30. Tao L. Fracture strain of gun steel for ultra-high-pressure vessels considering triaxiality effect. Advances in Mechanical Engineering 2017, 9.
  • 31. Hiermaier S. Structures under crash and impact. Springer 2008.
  • 32. Price R.S., Zuke W.G., Infosino C.A Study of underwater explosions in a high gravity tank.
  • 33. Abaqus 6.14 Theory Manual. Simulia, Dassault Systems, 2014.
  • 34. Gong Y., Zhang W., Du Z., Zhu Y. Numerical study on the sagging damage of the simplified hull girder subjected to underwater explosion bubble. Applied Sciences 2023, 13, 2318, doi:10.3390/app13042318.
  • 35. Cygnarowska K., Czyż Z., Karpiński P., Skiba K. Strength analysis of the rotor hub of an unmanned helicopter. J. Phys.: Conf. Ser. 2021, 1736, 012024, doi:10.1088/1742-6596/1736/1/012024.
  • 36. Wendeker M., Czyż Z. Analysis of the bearing nodes loads of turbine engine at an unmanned helicopter during a jump up and jump down maneuver. EiN 2016, 18, 89-97, doi:10.17531/ein.2016.1.12.
  • 37. Szturomski B. Engineering application of FEM in problems of solid mechanics on the example of the ABAQUS program (in Polish). Wydawnictwo Akademickie AMW. Gdynia, 2013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b222ce21-ec23-4060-a59b-a7625d81d594
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.