Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 67, iss. 2 | 213--226
Tytuł artykułu

Response surfaces in the numerical homogenization of non-linear porous materials

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the numerical homogenization of structures made of non-linear porous material. Material non-linearity causes a significant increase in computational costs for numerical homogenization procedure. An application of the response surface methodology allows a significant reduction of the computational effort providing good approximation precision. Finite element method commercial software is employed to solve the boundary-value problem in both scales. Due to the significant reduction in computing time, the proposed attitude may be applied for different optimization and identification tasks for inhomogeneous, non-linear media, especially with the use of global optimization methods.
Wydawca

Rocznik
Strony
213--226
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Institute of Computational Mechanics and Engineering Silesian University of Technology, witold.beluch@polsl.pl
Bibliografia
  • 1. Liu L.S., Chen G.F., Porous materials. Processing and applications, Elsevier, 2014.
  • 2. Wen C.E., Mabuchi M., Yamada Y.Y., Shimojima K., Chino Y., Asagina T., Processing of biocompatible porous Ti and Mg, Scripta Materialia, 45(10): 1147–1153, 2001, https://doi.org/10.1016/S1359-6462(01)01132-0.
  • 3. Ishizaki K., Porous Materials: Process Technology and Applications, Springer, Boston, 1998.
  • 4. Kouznetsova V., Computational homogenization for the multi-scale analysis of multiphase materials, PhD. thesis, Technische Universiteit Eindhoven, 2002.
  • 5. Weise T., Global optimization algorithms. Theory and application, 2nd ed., Thomas Weise, Germany, 2009.
  • 6. Beluch W., Długosz A., Multiobjective and multiscale optimization of composite materials by means of evolutionary computations, Journal of Theoretical and Applied Mechanics, 54(2): 397–409, 2016, doi: 10.15632/jtam-pl.54.2.397.
  • 7. Beluch W., Burczyński T., Two-scale identification of composites’ material constants by means of computational intelligence methods, Archives of Civil and Mechanical Engineering, 14(4): 636–646, 2014, https://doi.org/10.1016/j.acme.2013.12.007.
  • 8. Beluch W., Hatłas M., Multiscale evolutionary optimization of Functionally Graded Materials, [in:] Proceedings of the 3rd Polish Congress of Mechanics (PCM) and 21st International Conference on Computer Methods in Mechanics (CMM), Chapter 15, pp. 83–86, CRC Press/Balkema, 2016.
  • 9. ANSYS 3D DesignXplorer 18.0 software documentation, ANSYS 2017.
  • 10. ANSYS Mechanical 18.2 software documentation, ANSYS 2017.
  • 11. Zohdi T., Wriggers P., An introduction to computational micromechanics, Springer, 2004.
  • 12. Dormieux L., Lemarchand E., Kondo D., Brach S., Strength criterion of porous media: Application of homogenization techniques, Journal of Rock Mechanics and Geotechnical Engineering, 9(1): 62–73, 2017, https://doi.org/10.1016/j.jrmge.2016.11.010.
  • 13. Fritzen F., Forest S., Böhlke T., Kondo D., Kanit T., Computational homogenization of elasto-plastic porous metals, International Journal of Plasticity, 29: 102–119, 2012, https://doi.org/10.1016/j.ijplas.2011.08.005.
  • 14. Terada K., Hori M., Kyoya T., Kikuchi N., Simulation of the multi-scale convergence in computational homogenization approaches, International Journal of Solids and Structures, 37(16): 2285–2311, 2000.
  • 15. Ptaszny J., Fedeliński P., Numerical homogenization by using the fast multipole boundary element method, Archives of Civil Mechanical Engineering, 11(1): 181–193, 2011, https://doi.org/10.1016/S1644-9665(12)60182-4.
  • 16. Zienkiewicz O.C., Taylor R.L., The finite element method, vol. 1–3, Butterworth, Oxford, 2000.
  • 17. Czyż T., Dziatkiewicz G., Fedeliński P., Górski R., Ptaszny J., Advanced computer modelling in micromechanics, Silesian University of Technology Press, Gliwice, 2013.
  • 18. Hill R., Elastic properties of reinforced solids: Some theoretical principles, Journal of Mechanics and Physics of Solids, 11: 357–372, 1963, https://doi.org/10.1016/0022- 5096(63)90036-X.
  • 19. Nemat-Nasser S., Hori M., Micromechanics: Overall properties of heterogeneous materials, Elsevier, 1999.
  • 20. Jiang T., Shao J., On the incremental approach for nonlinear homogenization of composite and influence of isotropization, Computational Material Science, 46(2): 447–451, 2009.
  • 21. Ilic S., Hackl K., Application of the multiscale FEM to the modeling of the nonlinear multiphase materials, Journal of Theoretical and Applied Mechanics, 47: 537–551, 2009.
  • 22. Terada K., Kikuchi N., Nonlinear homogenization method for practical applications, American Society of Mechanical Engineers, Applied Mechanics Division, 212: 1–16, 1995.
  • 23. Kleijnen J.P.C., Kriging metamodeling in simulation: A review, European Journal of Operational Research, 193: 707–716, 2009.
  • 24. Myers R.H., Montgomery D.C., Anderson-Cook C.M., Response surface methodology. Process and product optimization using designed experiments, Wiley, 2009.
  • 25. Bradley N., The response surface methodology, PhD thesis, Indiana University South Bend, 2007.
  • 26. Vapnik V., The support vector method of function estimation, [in:] J.A.K. Suykens, J. Vandewalle [Eds], Nonlinear modeling, Springer, Boston, MA, 1998.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b21943ef-7c61-42ff-a555-aec2dff12b5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.