Warianty tytułu
Języki publikacji
Abstrakty
In this pioneering work, we propose a manufacturing plan for a 3D hollow hemispherical solar selective absorber (HSSA). The HSSA stands out as a superior choice compared to planar absorbers, thanks to its numerous benefits and wide-ranging applications, particularly in solar harvesting and photothermal desalination. Importantly, HS-SAs reduce radiative losses by emitting thermal radiation along their curved surfaces, which enhances concentration ratios and minimizes these losses. This study addresses the intricacies of fabricating the HSSA’s 3D convex shape. Our approach draws inspiration from a set of 2D flat solar selective absorbers (SSAs), each fine-tuned to adapt angles and intensities in response to solar radiation. These optimized SSAs are then arranged within a grid shell framework. As an illustrative example, we consider the widely-used selective coating W/Al2 O3-W/Al2O3. We optimize parameters, including layer thicknesses and the incorporation of metal in the absorber, to attain optimal values for photothermal conversion output under varying oblique incidence angles. For this optimization process, we employ the non-parametric particle swarm algorithm known as ‘phasor,’ recognized for its autonomous search for global optima in complex and multimodal optimization problems. Our calculations yield a remarkable photo-thermal conversion efficiency, reaching up to 0.966429. This research is driven by the aspiration to maintain such high efficiency, even in the face of fluctuations in solar radiation incidence and intensity throughout the day. Simplifying calculations, we divide the hemisphere into five spots, optimizing each for peak performance according to its positioning. These collective efforts and innovations culminate in the development of a compact solar water desalination system, engineered for efficient operation, even in the presence of one sun.
Rocznik
Tom
Strony
130--149
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Laboratory of Electronic Systems, Information Processing, Mechanical, and Energy, University Ibn Tofail, Kénitra, Morocco, oussama.gliti@uit.ac.ma
autor
- Laboratory of Electronic Systems, Information Processing, Mechanical, and Energy, University Ibn Tofail, Kénitra, Morocco
- Advanced Systems Engineering, ENSA , Kentia , Morocco
Bibliografia
- 1. Ajdad, H., Filali Baba, Y., Al Mers, A., Merroun, O., Bouatem, A., Boutammachte, N. 2019. Particle swarm optimization algorithm for optical-geometric optimization of linear fresnel solar concentrators. Renewable Energy, 130, 992–1001. https://doi.org/10.1016/j.renene.2018.07.001
- 2. Cai, H., Sun, Y., Liu, J., Wang, X. 2021. Genetic algorithm optimization for highly efficient solar thermal absorber based on optical metamaterials. Journal of Quantitative Spectroscopy and Radiative Transfer, 271, 107712. https://doi.org/10.1016/j.jqsrt.2021.107712
- 3. Chen, J., Li, X., Chen, Y., Zhang, Z., Yu, Y., He, X., Chen, H., Yang, J., Zhang, Z., Yao, X. 2023. Temperature Self-Adaptive Ultra-Thin Solar Absorber Based on Optimization Algorithm. Photonics, 10(5), 546. https://doi.org/10.3390/photonics10050546
- 4. Chen, L.-Y. (Éd.). 2021. Optical Properties of Solar Absorber Materials and Structures. Springer Singapore, 142. https://doi.org/10.1007/978-981-16-3492-5
- 5. Duffie, J. A., Beckman, W. A. (s. d.). Solar Engineering of Thermal Processes.
- 6. Freitas, D., Lopes, L. G., Morgado-Dias, F. 2020. Particle Swarm Optimisation : A Historical Review Up to the Current Developments. Entropy, 22(3), 362. https://doi.org/10.3390/e22030362
- 7. Ghasemi, M., Aghaei, J., Hadipour, M. 2017. New self‐organising hierarchical PSO with jumping time‐varying acceleration coefficients. Electronics Letters, 53(20), 1360–1362. https://doi.org/10.1049/el.2017.2112
- 8. Ghasemi, M., Akbari, E., Rahimnejad, A., Razavi, S. E., Ghavidel, S., Li, L. 2019. Phasor particle swarm optimization : A simple and efficient variant of PSO. Soft Computing, 23(19), 9701–9718. https://doi.org/10.1007/s00500-018-3536-8
- 9. Grosjean, A., Soum-Glaude, A., Neveu, P., Thomas, L. 2018. Comprehensive simulation and optimization of porous SiO2 antireflective coating to improve glass solar transmittance for solar energy applications. Solar Energy Materials and Solar Cells, 182, 166–177. https://doi.org/10.1016/j.solmat.2018.03.040
- 10. Grosjean, A., Soum-Glaude, A., Thomas, L. 2021. Influence of operating conditions on the optical optimization of solar selective absorber coatings. Solar Energy Materials and Solar Cells, 230, 111280. https://doi.org/10.1016/j.solmat.2021.111280
- 11. Li, Y., Lin, C., Huang, J., Chi, C., Huang, B. 2021. Spectrally Selective Absorbers/Emitters for Solar Steam Generation and Radiative Cooling‐Enabled Atmospheric Water Harvesting. Global Challenges, 5(1), 2000058. https://doi.org/10.1002/gch2.202000058
- 12. Lin, A., Sun, W. 2018. Multi-Leader Comprehensive Learning Particle Swarm Optimization with Adaptive Mutation for Economic Load Dispatch Problems. Energies, 12(1), 116. https://doi.org/10.3390/en12010116
- 13. Liu, B., Wang, C., Bazri, S., Badruddin, I. A., Orooji, Y., Saeidi, S., Wongwises, S., Mahian, O. 2021. Optical properties and thermal stability evaluation of solar absorbers enhanced by nanostructured selective coating films. Powder Technology, 377, 939–957. https://doi.org/10.1016/j.powtec.2020.09.040
- 14. Liu, J., Dou, C., Chen, W., Ma, W.-Z., Meng, D., You, X.-Q., Chen, Y.-S., Huang, P.-H., Gu, Y. 2022. Inverse design a patternless solar energy absorber for maximizing absorption. Solar Energy Materials and Solar Cells, 244, 111822. https://doi.org/10.1016/j.solmat.2022.111822
- 15. Luo, T., Young, R., Reig, P. (s. d.). Aqueduct Projected Water Stress Country Rankings.
- 16. Ma, W., Chen, W., Li, D., Liu, Y., Yin, J., Tu, C., Xia, Y., Shen, G., Zhou, P., Deng, L., Zhang, L. 2023. Deep learning empowering design for selective solar absorber. Nanophotonics, 12(18), 3589–3601. https://doi.org/10.1515/nanoph-2023-0291
- 17. Ning, Y., Wang, J., Ou, C., Sun, C., Hao, Z., Xiong, B., Wang, L., Han, Y., Li, H., Luo, Y. 2020. NiCr–MgF2 spectrally selective solar absorber with ultrahigh solar absorptance and low thermal emittance. Solar Energy Materials and Solar Cells, 206, 110219. https://doi.org/10.1016/j.solmat.2019.110219
- 18. Pyone, E. C., Van, T. H., Le, T. M., Bui, L. V. H. (s. d.). Phasor particle swarm optimization of dome structures under limited natural frequency conditions.
- 19. Van Thieu, N., Mirjalili, S. 2023. MEALPY : An open-source library for latest meta-heuristic algorithms in Python. Journal of Systems Architecture, 139, 102871. https://doi.org/10.1016/j.sysarc.2023.102871
- 20. Wang, Z.-Y., Hu, E.-T., Cai, Q.-Y., Wang, J., Tu, H.-T., Yu, K.-H., Chen, L.-Y., Wei, W. 2020. Accurate Design of Solar Selective Absorber Based on Measured Optical Constants of Nano-thin Cr Film. Coatings, 10(10), 938. https://doi.org/10.3390/coatings10100938
- 21. Wu, Z., Ren, Z., Wang, J., Hou, S., Liu, Y., Zhang, Q., Mao, J., Liu, X., Cao, F. 2022. Realization of an efficient wide-angle solar selective absorber via the impedance matching. Solar Energy Materials and Solar Cells, 238, 111582. https://doi.org/10.1016/j.solmat.2022.111582
- 22. Xia, X., Li, S. 2020. Research on Improved Chaotic Particle Optimization Algorithm Based on Complex Function. Frontiers in Physics, 8, 368. https://doi.org/10.3389/fphy.2020.00368
- 23. You, K., Lin, J., Meng, D., Ma, W., Cheng, Y., Liu, J., Deng, X., Chen, Y. 2023. Study of a perfect solar absorber from the visible to the near-infrared band using particle swarm optimization. Optical Materials Express, 13(3), 656. https://doi.org/10.1364/OME.484225
- 24. Younis, O., Hussein, A. K., Attia, M. E. H., Rashid, F. L., Kolsi, L., Biswal, U., Abderrahmane, A., Mourad, A., Alazzam, A. 2022. Hemispherical solar still : Recent advances and development. Energy Reports, 8, 8236–8258. https://doi.org/10.1016/j.egyr.2022.06.037
- 25. Yu, H., Liu, D., Duan, Y., Yang, Z. 2015. Applicability of the effective medium theory for optimizing thermal radiative properties of systems containing wavelength-sized particles. International Journal of Heat and Mass Transfer, 87, 303–311. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.013
- 26. Zhang, J., Wang, C., Shi, J., Wei, D., Zhao, H., Ma, C. 2022. Solar Selective Absorber for Emerging Sustainable Applications. Advanced Energy and Sustainability Research, 3(3), 2100195. https://doi.org/10.1002/aesr.202100195
- 27. Zhang, W.-W., Qi, H., Yu, Z.-Q., He, M.-J., Ren, Y.-T., Li, Y. 2021. Optimization configuration of selective solar absorber using multi-island genetic algorithm. Solar Energy, 224, 947–955. https://doi.org/10.1016/j.solener.2021.06.059
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b1fc8fea-cde2-4171-9778-64056f19db9b