Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 18, no. 2 | 546--556
Tytuł artykułu

Vacuum brazing of Ti2AlNb and TC4 alloys using Ti–Zr–Cu–Ni and Ti–Zr–Cu–Ni + Mo filler metals: Microstructural evolution and mechanical properties

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two kinds of filler metal, Ti–Zr–Cu–Ni and Ti–Zr–Cu–Ni + Mo, were used to vacuum braze Ti2AlNb and TC4 alloys. The interfacial microstructures and the room temperature (RT) and elevated temperature shear strengths of the brazed joints were analysed. Moreover, the effects of the brazing parameters and filler metal Mo content on the microstructure and corresponding mechanical properties of the brazed joints were investigated. The results showed that the typical brazed joint mainly contained α-Ti, (Ti,Zr)2(Cu,Ni), β-Ti, and Ti-rich phases. The addition of the Mo particles was beneficial to inhibit the eutectoid transformation of β-Ti during cooling, resulting in the formation of residual β-Ti instead of α-Ti. In addition, Mo particles can also make the microstructure more homogeneous. The highest RT shear strength of the joints brazed with the Ti–Zr–Cu–Ni filler metal was 351 MPa when the joint was brazed at 980 °C for 10 min. Under the same brazing parameters, the RT shear strength reached 437 MPa with the addition of 8 wt.% Mo particles to the filler metal. Moreover, the shear strengths of the joints brazed with the Mo-free and 8 wt.% Mo filler metals tested at 600 °C were 272 MPa and 393 MPa, respectively.
Słowa kluczowe
Wydawca

Rocznik
Strony
546--556
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • Tianjin Key Lab of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China, wangycl@tju.edu.cn
autor
  • Tianjin Key Lab of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China, jiaomantju@163.com
autor
  • Tianjin Key Lab of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China, yangzw@tju.edu.cn
autor
  • Tianjin Key Lab of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China, tjwangdp@163.com
autor
  • Tianjin Key Lab of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China, ycliu@tju.edu.cn
Bibliografia
  • [1] D. Banerjee, The intermetallic Ti2AlNb, Prog. Mater. Sci. 42 (1997) 135–158.
  • [2] J.H. Peng, Y. Mao, S.Q. Li, X.F. Sun, Microstructure controlling by heat treatment and complex processing for Ti2AlNb based alloys, Mater. Sci. Eng. A 299 (1–2) (2001) 75–80.
  • [3] C.J. Cowen, C.J. Boehlert, Microstructure, creep, and tensile behavior of a Ti–21Al–29Nb (at.%) orthorhombic + B2 alloy, Intermetallics 14 (4) (2006) 412–422.
  • [4] S.G. Wang, X.Q. Wu, Investigation on the microstructure and mechanical properties of Ti–6Al–4V alloy joints with electron beam welding, Mater. Des. 36 (2012) 663–670.
  • [5] N. Saresh, M.G. Pillai, J. Mathew, Investigations into the effects of electron beam welding on thick Ti–6Al–4V titanium alloy, J. Mater. Process. Technol. 192–193 (2007) 83–88.
  • [6] Y.Y. Liu, Z.K. Yao, H.Z. Guo, H.H. Yang, Microstructure and property of the Ti–24Al–15Nb–1.5Mo/TC11 joint welded by electron beam welding, Int. J. Miner. Metall. Mater. 16 (5) (2009) 568–575.
  • [7] L.J. Tan, Z.W. Yao, W. Zhou, H.Z. Guo, Y. Zhao, Microstructure and properties of electron beam welded joint of Ti–22Al– 25Nb/TC11, Aerospace Sci. Technol. 14 (5) (2010) 302–306.
  • [8] Z.L. Lei, Z.J. Dong, Y.B. Chen, L. Huang, R.C. Zhu, Microstructure and mechanical properties of laser welded Ti–22Al–27Nb/TC4 dissimilar alloys, Mater. Sci. Eng. A 559 (2013) 909–916.
  • [9] Y. Wang, X.Q. Cai, Z.W. Yang, Q.W. Qiu, D.P. Wang, Y.C. Liu, Microstructure evolution and mechanical properties of Ti– 22Al–25Nb alloy joints brazed with Ti–Ni–Nb alloy, Mater. Chem. Phys. 182 (2016) 488–497.
  • [10] P. He, J.C. Feng, H. Zhou, Microstructure and strength of brazed joints of Ti3Al-base alloy with NiCrSiB, Mater. Charact. 52 (4–5) (2004) 309–318.
  • [11] P. He, J.C. Feng, H. Zhou, Microstructure and strength of brazed joints of Ti3Al-base alloy with TiZrNiCu filler metal, Mater. Sci. Eng. A 392 (1–2) (2005) 81–86.
  • [12] H.S. Ren, H.P. Xiong, B. Chen, S.J. Pang, B.Q. Chen, L. Ye, Vacuum brazing of Ti3Al-based alloy to TiAl using Ti–Zr–Cu– Ni (Co) fillers, J. Mater. Process. Technol. 224 (2015) 26–32.
  • [13] Q.W. Qiu, Y. Wang, Z.W. Yang, X. Hu, D.P. Wang, Microstructure and mechanical properties of TiAl alloy joints vacuum brazed with Ti–Zr–Cu–Ni brazing powder without and with Mo additive, Mater. Des. 90 (2016) 650–659.
  • [14] B. Cui, J.H. Huang, C. Cai, S.H. Chen, X.K. Zhao, Microstructures and mechanical properties of Cf/SiC composite and TC4 alloy joints brazed with (Ti–Zr–Cu–Ni) + W composite filler materials, Compos. Sci. Technol. 97 (2014) 19–26.
  • [15] L. Li, X.Q. Li, K. Hu, S.G. Qu, C. Yang, Z.F. Li, Effects of brazing temperature and testing temperature on the microstructure and shear strength of g-TiAl joints, Mater. Sci. Eng. A 634 (2015) 91–98.
  • [16] Y. Wang, Q.W. Qiu, Z.W. Yang, D.P. Wang, Microstructure evolution and mechanical properties of Ti–43Al–9V–0.3Y alloy joints brazed with Ti–Zr–Cu–Ni + Mo composite filler, Adv. Eng. Mater. 18 (2016) 944–952.
  • [17] Y.M. He, J. Zhang, Y. Sun, C.F. Liu, Microstructure and mechanical properties of the Si3N4/42CrMo steel joints brazed with Ag–Cu–Ti + Mo composite filler, J. Eur. Ceram. Soc. 30 (15) (2010) 3245–3251.
  • [18] M.K. Lee, J.G. Lee, Mechanical and corrosion properties of Ti– 6Al–4V alloy joints brazed with a low-melting-point 62.7Zr– 11.0Ti–13.2Cu–9.8Ni–3.3Be amorphous filler metal, Mater. Charact. 81 (2013) 19–27.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b1e5c1a8-a0a8-4ec8-905b-ca4f568070db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.