Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | nr 1(82) | 115--125
Tytuł artykułu

Medical and economical significance of millipedes

Treść / Zawartość
Warianty tytułu
PL
Znaczenie medyczne i gospodarcze krocionogów
Języki publikacji
EN PL
Abstrakty
EN
Millipedes as saprophagous epigeic fauna members are involved in the decomposition of organic debris. Diplopod’s activity improve circulation of nutrients, elements and accelerate environmental reclamation. Beyond mentioned above Diplopoda can provoke sanitary and epidemiological threats especially during swarming or seasonal migrations activities. Considering following aspects: contact with defensive secretions, pseudo-parasitic activity that imitates helminthiasis or passive transmission of pathogens, we can discuss direct or distant effects on human health. Education and proper prophylactic remain neglected. Variety of substances from millipedes are checked for their medical action: direct body extracts and active chemical components from defensive secretion. Millipedes may serve as source for zoo-pharmacology and zoo-indication development. This issue review shows that both pros and cons of the Diplopod’s influences should be considered. Literature was carried out from middle of 20th century article till recent papers. The nowadays literature were found in Google Scholar, PubMed, Medline search base.
PL
Krocionogi jako przedstawiciele saprofagów w faunie epigeicznej odpowiadają za dekompozycję pozostałości organicznych. Aktywność dwuparców poprawia cyrkulację składników odżywczych, pierwiastków i wzmaga proces rekultywacji środowiska. Poza wyżej wymienionymi Diplopoda powodują zagrożenia sanitarne i epidemiologiczne szczególnie podczas masowych pojawów i migracji. Biorąc od uwagę następujące aspekty: kontakt z sekrecjami obronnymi, aktowość pseudo-pasożytniczą, która imituje robaczyce oraz bierną transmisję patogenów możemy mówić o bezpośrednim i odległym wpływie na ludzkie zdrowie. W zakresie edukacji i profilaktyki pozostaje nadal wiele do uzupełnienia. Różne substancje pozyskiwane z krocionogów są testowane ze względu na ich medyczne właściwości; bezpośrednie wydzieliny, płyny i fragmenty ciała oraz aktywne związki z sekrecji obronnych. Krocionogi mogą posłużyć jako źródło rozwoju zoo-farmakognozji i zoo-indykacji. Zaprezentowany przegląd zagadnień sugeruje zarówno pozytywy jak i negatywne aspekty znaczenia grupy. Zebrano literaturę z połowy dwudziestego wieku oraz współczesną. W przypadku najnowszych doniesień korzystano z baz danych Google Scholar, PubMed, Medline.
Wydawca

Rocznik
Tom
Strony
115--125
Opis fizyczny
Bibliogr. 120 poz., fot.
Twórcy
autor
  • Chair of Pharmacology and Biology, Medical University in Lublin, Poland
  • Hygiene and Epidemiology Department, Medical University in Lublin, Poland
Bibliografia
  • 1. Shelley RM. A revised, annotated, family-level classification of the Diplopoda. Arthropoda Sel. Moscow. 2002. 11: 187-207.
  • 2. David JF. Diplopoda- Ecology. in: Minelli A. (ed.), Treatise on Zoology-Anatomy, Taxonomy, Biology. The Myriapoda, Brill, Leiden-Boston, 2015, pp. 303-327.
  • 3. Enghoff H, Golovatch SI, Short M, Stoev P, Wesener T. Diplopoda- taxonomic overview. in: Minelli A. (ed.), Treatise on Zoology-Anatomy, Taxonomy, Biology. The Myriapoda, Brill, Leiden-Boston, 2015, pp. 363-453.
  • 4. Sierwald P, Bond JE. Current Status of the Myriapod Class Diplopoda (Millipedes): Taxonomic Diversity and Phylogeny. Annu. Rev. Entomol. 2007. 52: 401-420. https://doi.org/10.1146/annurev.ento.52.111805.090210.
  • 5. Golovatch SI, Kime RD. Millipede (Diplopoda) distributions: A review. Soil Org. 2009. 81: 565-597. https://soil-organisms.org/index.php/SO/article/view/210.
  • 6. Shear W. Class Diplopoda de Blainville Gervais, 1844, in: Zhang Z-Q. (ed.), Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness, Zootaxa. 2011, pp. 159-164. https://doi.org/10.11646/zootaxa.3148.1.32.
  • 7. Brewer MS, Sierwald P, Bond JE. Millipede taxonomy after 250 years: classification and taxonomic practices in a mega-diverse yet understudied arthropod group. PLoS One. 2012. e37240. https://doi.org/10.1371/journal.pone.0037240.
  • 8. Sierwald P, Spelda J. MilliBase, VI, 2020. http://www.millibase.org., doi:10.14284/370.
  • 9. Kime RD, Golovatch SI. Trends in the ecological strategies and evolution of millipedes (Diplopoda). Biol. J. Linn. Soc. 2000. 69: 333-349. https://doi.org/10.1111/j.1095-8312. 2000.tb01209.x.
  • 10. David JF. The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views. Soil Biol. Biochem. Elsevier. 2014. 76: 109-118. https://doi.org/10.1016/j.soilbio.2014.05.009.
  • 11. Blower J.G. Millipedes, Keys and notes for the identification of the species, in: Kermack DM, Barnes RSK. (eds.), Synopses of the British fauna. Brill E.J., Buckhuys W., London, 1985, pp.1-242.
  • 12. Marek PE, Moore W. Discovery of a glowing millipede in California and the gradual evolution of bioluminescence in Diplopoda. Proc. Natl. Acad. Sci. U.S.A. 2015. 112: 6419-6424. https://doi.org/10.1073/pnas.1500014112.
  • 13. Srisonchai R, Enghoff H, Likhitrakarn N, Panha S. Four colorful new species of dragon millipedes, genus Desmoxytes Chamberlin, 1923, from northern Thailand (Diplopoda: Polydesmida: Paradoxosomatidae). Zootaxa. 2016. 4170: 93-113. doi: 10.11646/zootaxa.4170.1.4. PMID: 27701275.
  • 14. Means JC, Hennen DA, Marek PE. A revision of the minor species group in the millipede genus Nannaria Chamberlin, 1918 (Diplopoda, Polydesmida, Xystodesmidae), Zookeys. 2021. 1030: 1-180. https://doi.org/10.3897/zookeys.1030.62544.
  • 15. Evans MEG, Blower JG. A jumping millipede, Nature. 1973. 246: 427-428. https://doi.org/10.1038/246427a0.
  • 16. Eisner T, Eisner M, Deyrup M. Millipede defense: use of detachable bristles to entangle ants. Proc. Natl. Acad. Sci. U.S.A. 1996. 93: 10848-10851. https://doi.org/10.1073/pnas.93.20.10848.
  • 17. Eisner T, Alsop D, Hicks K, Meinwald J. Defensive secretions of millipedes. in: Bettini S. (ed.), Handbook of Experimental Pharmacology Arthropod Venoms. Springer-Verlag, Berlin, 1978. pp. 41-72.
  • 18. Deml R, Huth A. Benzoquinones and hydroquinones in defensive secretions of tropical millipedes. Sci. Nat. 2000. 87: 80-82. https://doi.org/10.1007/s10886-017-0832-1.
  • 19. Kania G, Kowalski R, Pietraś R. Defensive secretions in millipede species of the order Julida (Diplopoda). Acta Soc. Zool. Bohemicae. 2016. 80: 17-20.
  • 20. Kania G. The medical significance of millipedes (Diplopoda) – human consequences of their chemical secretions and transmission of pathogenic bacteria. in: Buczek A, Błaszak Cz. (eds.), Arthropods in urban and suburban environments. Koliber, Lublin. 2017, pp. 169-186.
  • 21. Prokopowicz D. Rośliny trujące i zwierzęta jadowite. Wyd. Ekonomia i Środowisko, Białystok. 1999 pp. 207.
  • 22. Voigtländer K. Mass occurrences and swarming behaviour of millipedes (Diplopoda: Julidae) in Eastern Germany. Peckiana. 2005. 4: 181-187.
  • 23. Stoev P, Korsós Z. Oxidus gracilis (C.L. Koch, 1847)(Diplopoda, Polydesmida, Paradoxosomatidae) -14.2., in: Roques A, Lees D. (eds.), Factsheets for 80 representative alien species. BioRisk. 2010. 4: pp. 855-1021.
  • 24. Minelli A, Golovatch SI. Myriapods. in: Levin SA. (ed.), Encyclopedia of Biodiversity. Academic Press, Waltham, MA. 2001, pp. 421-432. https://doi.org/10.1016/B978-0-12-384719-5.00208-2.
  • 25. Makarov SE, Curcić BP, Tesević VV, Jadranin MB, Vujisić LV, Curcić SB, Mandić BM, Sekulić TLj, Mitic BM. Defensive secretions in three species of polydesmids (Diplopoda, Polydesmida, Polydesmidae), J. Chem. Ecol. 2010. 36: 978-982. https://doi.org/10.1007/s10886-010-9847-6.
  • 26. Geoffroy J. Subphyllum Myriapoda, Class Diplopoda, fourth ed., in: James H, Thorp DCh, (eds.), Thorp and Covich's Freshwater Invertebrates: Ecology and General Biology. Elsevier/Academic Press, Amsterdam. 2015.
  • 27. Shear W. The chemical defenses of millipedes (diplopoda): Biochemistry, physiology and ecology. Biochem. Syst. Ecol. 2015. 61: 78-117. https://doi.org/10.1016/j.bse.2015.04.033.
  • 28. Ilić B, Unković N, Ćirić A, Glamočlija J, Ljaljević Grbić M, Raspotnig G, Bodner M, Vukojević J, Makarov S. Phenol-based millipede defence: antimicrobial activity of secretions from the Balkan endemic millipede Apfelbeckia insculpta (L. Koch,1867) (Diplopoda: Callipodida). Sci. Nat. 2019. 106: 1-37. https://doi.org/10.1007/s00114-019-1631-z.
  • 29. Shear WA, Jones TH, Wesener T. Glomerin and homoglomerin from the North American pill millipede Onomeris sinuata (Loomis, 1943) (Diplopoda, Pentazonia, Glomeridae). Int. J. Myriap. 2011. 94: 1-10. https://doi.org/10.3897/ijm.4.1105.
  • 30. Kuwahara Y, Mori N, Tanabe T. Detection of a neotropical frog alkaloid spiropyrrolizidine 236 from a Japanese polyzoniid millipede Kiusiozonium okai as a major defense component together with polyzonimine and nitropolyzonimine. Jpn. J. Environ. Ent. Zool. 2007. 18: 91-96.
  • 31. Wood W, Hanke F, Kubo I, Carroll J, Crews P. Buzonamine, a new alkaloid from the defensive secretion of the millipede, Buzonium crassipes. Biochem. Syst. Ecol. 2000. 28: 305-312. https://doi.org/10.1016/S0305-1978(99)00068-X.
  • 32. Arab A, Zacarin GG, Fontanetti CS, Camargo-Mathias MI, Dos Santos MG, Cabrera AC. Composition of the defensive secretion of the neotropical millipede Rhinocricus padbergi Verhoeff 1938 (Diplopoda: Spirobolida: Rhinocricidae). Entomotropica. 2003. 18: 79-82.
  • 33. Wu X, Buden DW, Attygalle AB. Hydroquinones from defensive secretion of a giant Pacific millipede, Acladocricus setigerus (Diplopoda: Spirobolida), Chemoecology. 2007. 17: 131-138. https://doi.org/10.1007/s00049-007-0372-1.
  • 34. Bodner M, Raspotnig G. Millipedes that smell like bugs: (E)-Alkenals in the defensive secretion of the julid diplopod Allajulus dicentrus. J. Chem. Ecol. 2012. 38: 547-556. https://doi.org/10.1007/s10886-012-0127-5.
  • 35. Sekulić TLj, Vujisić LjV, Ćurčić BPM, Mandić BM, Antić DŽ, Trifunović SS, Gođevac DM, Vajs EV, Tomić VT, Makarov S.E. Quinones and non-quinones from the defensive secretion of Unciger transsilvanicus (Verhoeff, 1899) (Diplopoda, Julida, Julidae), from Serbia. Arch. Biol. Sci. Belgr. 2014. 66: 385-390. https://doi.org/10.2298/ABS1401385S.
  • 36. Shimizu N, Kuwahara Y, Yakamaru R, Tanabe T. n-Hexyl laurate and fourteen related fatty-acid esters: new secretory compounds from the julidmillipede, Anaulaciulus sp. J. Chem. Ecol. 2012. 38: 23-28. https://doi.org/10.1007/s10886-012-0063-4.
  • 37. Bodner M, Vagalinski B, Makarov SE, Antić DŽ, Vujisić LV, Leis HJ, Raspotnig G. “Quinone Millipedes” Reconsidered: Evidence for a Mosaic-Like Taxonomic Distribution of Phenol-Based Secretions across the Julidae. J. Chem. Ecol. 2016. 42: 249-258. https://doi.org/10.1007/s10886-016-0680-4.
  • 38. Kuwahara Y, Shimizu N, Tanabe T. Release of hydrogen cyanide via a post-secretion Schotten-Baumann reaction in defensive fluids of Polydesmoid millipedes. J. Chem. Ecol. 2011. 37: 232-238. https://doi.org/10.1007/s10886-011-9920-9.
  • 39. Ishida Y, Kuwahara Y, Dadashipour M. A sacrificial millipede altruistically protects its swarm using a drone blood enzyme, mandelonitrile oxidase. Sci. Rep. 2016. 6: 1-10. https://doi.org/10.1038/srep26998.
  • 40. Ilić B, Dimkić I, Unković N, Ljaljević Grbić M, Vukojević J, Vujisić L, Tešević V, Stanković S, Makarov S, Lučić L. Millipedes vs. pathogens: defensive secretions of some julids (Diplopoda: Julida) as potential antimicrobial agents. J. Appl. Entomol. 2018. 142: 775-791. https://doi.org/10.1111/jen.12526.
  • 41. Rodriguez J, Jones T.H, Sierwal P, Marek P, Shear W, Brewer M, Kocot K, Bond J. Step-wise evolution of complex chemical defenses in millipedes: a phylogenomic approach. Sci. Rep. 2018. 8: https://doi.org/10.1038/s41598-018-19996-6.
  • 42. Haddad V.Jr., Cardoso JL, Lupi O, Tyring SK. Tropical dermatology: venomous arthropods and human skin: Part II. Diplopoda Chilopoda, and Arachnida, J. Am. Acad. Dermatol. 2012. 67: 1-9. https://doi.org/10.1016/j.jaad.2012.05.028.
  • 43. Lofgran T, Warrington SJ. Millipede Envenomation. StatPearls, Treasure Island (FL): StatPearls Publishing, VI, 2022. https://www.ncbi.nlm.nih.gov/books/NBK557454/
  • 44. Neto A, Fred SH, Filho B, Martins G. Skin lesions simulating blue toe syndrome caused by prolonged contact with a millipede. Rev. Soc. Bras. Med. Trop. 2014. 47: 257-258. http://dx.doi.org/10.1590/0037-8682-0212-2013.
  • 45. Taira J, Nakamura K, Higa Y. Identification of secretory compounds from the millipede, Oxidus gracilis C.L. Koch (Polydesmida: Paradoxosomatidae) and their variation in different habitats. Appl. Ent. Zool. 2003. 38: 401- 404. https://doi.org/10.1303/aez.2003.401.
  • 46. De Capitani EM, Vieira RJ, Bucaretchi F, Fernandes LCR, Toledo AS, Camargo AC. Human accidents involving Rhinocricus spp., a common millipede genus observed in urban areas of Brazil. Clin. Toxicol. 2011. 49: 187-190. https://doi.org/10.3109/15563650.2011.560855.
  • 47. Lima CA,. Cardoso JL, Magela A, Oliveira FG, Talhari S, Haddad V.Jr. Exogenous pigmentation in toes feigning ischemia of the extremities: a diagnostic challenge brought by arthropods of the Diplopoda Class ("millipedes"). An Bras Dermatol. 2010. 85: 391-392. https://doi.org/10.1590/s0365-05962010000300018.
  • 48. Lacy FA, Elston DM. What’s Eating You? Millipede Burns, Cutis. 2019. 103: 195-196.
  • 49. Shpall S, Frieden I. Mahogany discoloration of the skin due to the defensive secretion of a millipede, Pediatr. Dermatol. 1991. 8: 25-27. https://doi.org/10.1111/j.1525-1470.1991.tb00834.x.
  • 50. Haddad V. Jr., Cardoso JLC. Accidents provoked by millipede with dermatological manifestations: report of two cases. An. Bras. Dermatol. 2000. 75: 471-474. https://doi.org/10.1016/j.abd.2019.10.003.
  • 51. Pennini SN, Rebello PFB, Guerra MGVB, Talhari S. Millipede accident with unusual dermatological lesion, An. Bras. Dermatol. 2019. 94: 765-767. https://doi.org/10.1016/j.abd.2019.10.003.
  • 52. Ertek M, Aslan I, Yazgi H, Torun HC, Ayyildiz A, Tasyaran MA. Infestation of the human intestine by the millipede, Nopoiulus kochii. Med. Vet. Entomol. 2004. 18: 306-307. https://doi.org/10.1111/j.0269-283X.2004.00507.x.
  • 53. Mowlavi G, Naddaf SR, Rezaeian M, Najafi N, Lucio-Forster A, Bowman DD. Apparent pseudoparasitism of the alimentary canal of a 5-year-old child by the millipede Brachyiulus lusitanus (Diplopoda: Julidae). Parasite. 2009. 16: 161-163. https://doi.org/10.1051/parasite/2009162161.
  • 54. Kiełczewski B. Gromada Wije (Myriapoda). w: Żółtowski Z. (red.), Arachnoentomologia lekarska. Wydawnictwo Lekarskie PZWL, Warszawa. 1976; ss. 90-93.
  • 55. Stojałowska W, Krocionogi (Diplopoda) Polski. Wyd. 1. (first ed.), Państwowe Wydawnictwo Naukowe, Warszawa. 1961.
  • 56. Brumpt É. Précis de Parasitologie, sixth ed. Masson ET Cie Editeurs, Paris. 1949.
  • 57. Pawłowski E. Wytyczne do parazytologii człowieka. Wyd. 1. Moskwa- Leningrad. 1948
  • 58. Vakarenko EG, Kornyushin VV. Description of a cysticercoid of Sobolevitaenia verulamii (Cestoda, Cyclophyllidea) from its intermediate host Glomeris connexa (Diplopoda, Glomeridae). Vest Zool. 2002. 36: 61-64.
  • 59. Beaver PCh, Jung RC, Cupp EW. Cyclophyllidean Tapeworms. in: Clinical Parasitology, Lea and Febiger. Philadelphia, 1984, pp. 505-543.
  • 60. Kadłubowski R, Kurnatowska A. Zarys parazytologii lekarskiej. Wyd. VII (seventh ed.), Wydawnictwo Lekarskie PZWL,Warszawa, 1999.
  • 61. Jarosz J, Kania G. The question of whether gut microfora of the millipede Ommatoiulus sabulosus could function as a threshold to food infections. Pedobiologia. 2000. 44: 705-708. https://doi.org/10.1078/S0031-4056(04)70083-9.
  • 62. Byzov BA. Intestinal microbiota of millipedes. in: Konig H, Varma A. (eds.), Soil Biology. Intestinal microorganisms of termites and other Invertebrates, Springer-Verlag, Berlin, Heidelberg. 2006. 6: pp. 90-114.
  • 63. Kania G. The economic and medical significance of millipedes (Diplopoda) with emphasis on Ommatoiulus sabulosus. in: Tajovský K, Schlagamersky J, Pizl V. (eds.), Contributions to Soil Zoology in Central Europe III. Ceske Budejovice. 2009. pp. 73-77.
  • 64. Kania G, Kłapeć T. Seasonal activity of millipedes (Diplopoda) – their economic and medical significance. Ann. Agric. Environ. Med. 2012. 19: 646-650.
  • 65. Dutkiewicz J, Mackiewicz B, Lemieszek MK, Golec M. Pantoea agglomerans: a mysterious bacterium of evil and good. Part III, Deleterious effects: infections of humans, animals and plants. Ann. Agric. Environ. Med. 2016. 23: 197-205. https://doi.org/10.5604/12321966.1203878.
  • 66. Alagesan P. Millipedes as host for microbes–a review, Int. J. Microbiol. Res. 2017. 8: 19-24. https://doi.org/10.5829/idosi.ijmr.2017.19.24.
  • 67. Weldon PJ, Aldrich JR, Klun JA, Oliver JE, Debboun M. Benzoquinones from millipedes deter mosquitoes and elicit self-anointing in capuchin monkeys (Cebus sp.), Sci. Nat. 2003. 90: 301-304. https://doi.org/10.1007/s00114-003-0427-2.
  • 68. Carroll JF, Kramer M, Weldon PJ, Robbins RG. Anointing chemicals and ectoparasites: effects of benzoquinones from millipedes on the lone star tick, Amblyomma americanum. J. Chem. Ecol. 2005. 31: 63-75. https://doi.org/10.1007/s10886-005-0974-4.
  • 69. Alagesan P. Millipedes: Diversity, distribution and ecology. in: Chakravarthy AK, Sridhara S. (eds.), Arthropod Diversity and Conservation in the Tropics and Sub-tropics, Springer. 2016. pp. 119-137.
  • 70. Shear W, Jones T. Miras H. A possible phylogenetic signal in milliped chemical defenses: the polydesmidan milliped Leonardesmus injucundus Shelley & Shear secretes p-cresol and lacks a cyanogenic apparatus (Diplopoda, Polydesmida, Nearctodesmidae). Biochem. Syst. Ecol. 2007. 35: 838-842. https://doi.org/10.1016/j.bse.2007.01.005.
  • 71. Sekulić TLj,. Vujisić LjV, Ćurčić BPM, Mandić BM, Antić DŽ, Trifunović SS, Gođevac DM, Vajs EV, Tomić VT, Makarov SE. Quinones and non-quinones from the defensive secretion of Unciger transsilvanicus (Verhoeff, 1899) (Diplopoda, Julida, Julidae), from Serbia. Arch. Biol. Sci. 2014. 66: 385-390. https://doi.org/10.2298/ABS1401385S.
  • 72. Valderrama X, Robinson JG, Attygalle AB, Eisner T. Seasonal anointment with millipedes in a wild primate: a chemical defense against insects? J. Chem. Ecol. 2000. 26: 2781-2790. https://doi.org/10.1023/A:1026489826714.
  • 73. Weldon P, Cranmore C, Chatfield J. Prey-rolling behavior of coatis (Nasua sp.) is elicited by benzoquinones from millipedes. Sci. Nat. 2006. 93: 14-16. https://doi.org/10.1007/s00114-005-0064-z.
  • 74. Zito M, Evans S, Weldon PJ. Owl monkeys (Aotus spp.) self-anoint with plants and millipedes. Folia Primatol. 2003. 74: 159-161. https://doi.org/10.1159/000070649
  • 75. Olivieri N, Capone F, Puopolo M, Santucci D, Alleva E. Response of CD-1 mice to the chemical defence of a common arthropod (Ommatoiulus sabulosus). Physiol. Behav. 2001. 74: 305-311. https://doi.org/10.1016/s0031-9384(01)00563-7
  • 76. Jung M, Kania G. Wrogowie naturalni krocionogów (Diplopoda) - drapieżne kręgowce. (Natural enemies of millipedes (Diplopoda), Vertebrate predators. in: Maciąg M, Maciąg K. (red.), Makroorganizmy-przegląd wybranych badań, Lublin 2018, Wydawnictwo Naukowe Tygiel, Lublin. 2018. pp. 31-45.
  • 77. Chinlampianga M, Singh RK, Shukla AC. Ethnozoological diversity of northeast India: empirical learning with traditional knowledge holders of Mizoram and Arunachal Pradesh. Ind. J. Trad. Knowledge. 2013. 12:18-30. http://nopr.niscpr.res.in/handle/123456789/15342
  • 78. Enghoff H, Manno N, Tchibozo S, List M, Schwarzinger B, Schoefberger W, Schwarzinger C, Paoletti MG. Millipedes as food for humans: their nutritional and possibly antimalarial value–a first report, eCAM, Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine, IX, 2014. https://doi.org/10.1155/2014/651768.
  • 79. Peckre LR, Defolie Ch, Kappeler PM, Fichtel C. Potential self‑medication using millipede secretions in red‑fronted lemurs: combining anointment and ingestion for a joint action against gastrointestinal parasites? Primates. 2018. 59: 483-494. https://doi.org/10.1007/s10329-018-0674-7
  • 80. Daly JW, Garraffo HM, Jain P, Spande TF, Snelling RR, Jaramillo C, Rand S. Arthropod–Frog connection: Decahydroquinoline and Pyrrolizidine alkaloids common to microsympatric myrmicine ants and dendrobatid frogs. J. Chem. Ecol. 2000. 26: 73-85. https://doi.org/10.1023/A:1005437427326
  • 81. Clark VC, Raxworthy ChR, Rakotomalala V, Sierwald P, Fisher BL. Convergent evolution of chemical defense in poison frogs and arthropod prey between Madagascar and the Neotropic. Proc. Natl. Acad. Sci. USA 2005. 102: 11617-11622. https://doi.org/10.1073/pnas.0503502102
  • 82. Saporito RA, Donnely MA, Hoffman R.L., Garraffo HM, Daly JW. A siphonotid millipede (Rhinotus) as the source of spiropyrrolizidine oximes of dendrobatid frogs. J. Chem. Ecol. 2003. 29: 2781-2786. DOI: 10.1023/b:joec.0000008065.28364.a0
  • 83. Dandawate PR, Vyas AC, Padhye SB, Singh MW, Baruah JB. Perspectives on medicinal properties of benzoquinone compounds. Mini-Rev. Med. Chem. 2010. 10: 436-454. DOI: 10.2174/138955710791330909
  • 84. Meyer-Rochow VB. Therapeutic arthropods and other, largely terrestrial, folk-medicinally important invertebrates: a comparative survey and review. J. Ethnobiol. Ethnomed. 2017. 13: 1-31. DOI: 10.1186/s13002-017-0136-0
  • 85. Salehi B, Sestito S, Rapposelli S, Peron G, Calina D, Sharifi-Rad M, Sharopov F, Martins N, Sharifi-Rad J. Epibatidine: A Promising Natural Alkaloid in Health, Biomolecules. 2018. 23: 10. https://doi.org/10.3390/biom9010006
  • 86. Ambarish CN, Sridhar KR. Pill-millipedes (Arthrosphaera: Sphaerotheriida) of the Western Ghats: a future source of antioxidants? Int. J. Trop. Insect Sci. 2015. 35: 117-124. DOI: https://doi.org/10.1017/S1742758415000132
  • 87. Ilić B, Unković N, Knežević A, Savković Ž, Ljaljević Grbić M, Vukojević J, Jovanović Z, Makarov S, Lučić L. Multifaceted activity of millipede secretions: Antioxidant, antineurodegenerative, and anti-Fusarium effects of the defensivesecretions of Pachyiulus hungaricus (Karsch, 1881) and Megaphyllum unilineatum (C. L. Koch, 1838) (Diplopoda: Julida), PLoS One. 2019. 14:e0209999. DOI: 10.1371/journal.pone.0209999
  • 88. Voigtländer K, Balkenhol B. Studies on millipede assemblages (Myriapoda, Diplopoda) as influenced by habitat qualities of afforested mine sites. Nor. J. Entomol. 2006. 53: 345-360.
  • 89. Nogarol LR, Fontanetti CS. Acute and subchronic exposure of diplopods to substrate containing sewage mud: tissular responses of the midgut, Micron. 2010. 41: 239-246. https://doi.org/10.1016/j.micron.2009.10.009
  • 90. Steel H, Bert W. Biodiversity of compost mesofauna and its potential as an indicator of the composting potential status, Dynamic soil, Dynamic plant. 2012. 2: 45-50. https://biblio.ugent.be/publication/1996013/file/2007101
  • 91. Braschler B, Gilgado JD, Zwahlen V, Rusterholz HP, Buchholz S, Baur B. Ground-dwelling invertebrate diversity in domestic gardens along a rural-urban gradient: Landscape characteristics are more important than garden characteristics. PLoS One. 2020. 15: e0240061. doi: 10.1371/journal.pone.0240061
  • 92. Gilgado JD. Hidden in plain sight: six millipede species (Myriapoda: Diplopoda) new for the fauna of Switzerland. Rev. Suisse Zool. 2020. 127: 249-259. DOI: 10.35929/RSZ.0019
  • 93. Haľková B, Drabová M, Mock A. An annotated checklist of millipede fauna from Slovakia, with ecological and biogeographic characteristics. Biodivers. Data J. 2021. 9: e71495. https://doi.org/10.3897/BDJ.9.e71495
  • 94. Anitha C, Basil-Rose M.R. Characterization of naturally occurring agglutinin from the midgut of the rusty millipede Trigoniulus corallines. J. Global Trends Pharm. Sci. 2018. 9: 4968-4977.
  • 95. Roncadori R.W, Duffey SS, Blum MS. Antifungal activity of defensive secretions of certain millipedes. Mycologia, 1985. 72: 185-191. https://doi.org/10.2307/3793067
  • 96. Xylander W. Antibacterial substances and characteristics of the hemolymph of chilapoda and diplopoda (Myriapoda, Arthropoda). Soil Organisms. 2009. 81: 413-429. https://www.soil-organisms.org/index.php/SO/article/view/37
  • 97. Billah MK, Kwang D, Adofo C, Olu-Taiwo MA, Pesewu GA. Antibacterial activities of millipede extracts against selected bacterial pathogens. Journal of Microbiology and Antimicrobial Agents. 2015. 1: 3-35.
  • 98. Omura H, Kuwahara Y, Tanabe T. 1-octen-3-ol together with geosmin: new secretion compounds from a polydesmid millipede, Niponia nodulosa. J. Chem. Ecol. 2002. 28: 2601-2612. DOI: 10.1023/a:1021400606217
  • 99. Stanković S, Dimkić I, Vujisić L, Pavković-Lučić S, Jovanović Z, Stević T. Chemical defense in a millipede: evaluation and characterization of antimicrobial activity of the defensive secretion from Pachyiulus hungaricus (Karsch, 1881) (Diplopoda, Julida, Julidae), PloS ONE. 2016. 11: e0167249. https://doi.org/10.1371/journal.pone.0167249 PMID: 27907048
  • 100. Ilić B, Unković N, Ćirić A, Glamočlija J, Ljaljević Grbić M, Raspotnig G, Bodner M, Vukojević J, Makarov S. Phenol-based millipede defence: antimicrobial activity of secretions from the Balkan endemic millipede Apfelbeckia insculpta (L. Koch,1867) (Diplopoda: Callipodida). Sci. Nat. 2019. 106: 37. DOI: 10.1007/s00114-019-1631-z
  • 101. Pesewu GA, Maxwell KB, Christian A, Douglas K, Olu-Taiwo AM, Osei-Djarbeng S. Antibacterial Activities of Millipedes Extracts against Methicillin-Resistant Staphylococcus aureus (MRSA). Am. Int. J. Contemp. Res. 2015. 2: 1-13.
  • 102. [102] Glukhova AA, Karabanova AA, Yakushev AV, Semenyuk II, Boykova YV, Malkina ND, Efimenko TA, Ivankova TD, Terekhova LP, Efremenkova OV. Antibiotic Activity of Actinobacteria from the Digestive Tract of Millipede Nedyopus dawydoffiae (Diplopoda), Antibiotics. 2018. 7: 94. https://doi.org/10.3390/antibiotics7040094
  • 103. Ngbolua KTN, Ngunde-te-Ngunde S, Tshidibi DJ, Lengbiye ME, Mpiana PT, Ekutsu EG, Munene JJMM, Gbolo ZB, Bongo NG, Nzemu G. Anti-Sickling and Antibacterial Activities of Extracts from a Congolese Diplopod (Tachypodoiulus sp., Arthropoda). J Adv Bot Zool. 2014. 1: 1-5. https://doi.org/10.5281/zenodo.913641
  • 104. Tacoronte Morales JE, Cruel Sigüenza J, Canchingre Bone ME, Bernal Villavicencio C, Cabrera Pedroso MT. Antimicrobial activity of defensive secretions of terrestrial invertebrates (Diplopoda, Spirobolida, Rhinocricus) from the insular neotropics. in: Proceedings of the 2nd International Electronic Conference on Antibiotics—Drugs for Superbugs: Antibiotic Discovery, Modes of Action And Mechanisms of Resistance, Med. Sci. Forum. 2022. https://doi.org/10.3390/eca2022-12729.
  • 105. Walker CH, Hopkin SP, Sibly RM, Peakall DB. w: Migula P (red.), Środowisko. Podstawy ekotoksykologii. Polskie Wydawnictwo Naukowe, Warszawa. 2002. 373 pp.
  • 106. Hobbelen PHF, van den Brink PJ, Hobbelen JF, van Gesten CAM. Effects of heavy metals on the structure and functioning of detritivore communities in a contaminated floodplain area, Soil Biol. Biochem. 2006. 38: 1596-1607. https://doi.org/10.1016/j.soilbio.2005.11.010
  • 107. Draszawka-Bołzan B, Cyraniak E. Circuit heavy metals in nature, World Scientific News. 2014. 4: 32-38.
  • 108. Berg MP, Hemerik L. Secondary succession of terrestrial isopod, centipede and millipede communities in grasslands under restoration, Biol. Fertil. Soils. 2004. 40: 163-170. DOI: 10.1007/s00374-004-0765-z
  • 109. Grelle C, Fabre M, Lepretre A, Descamps M. Myriapod and isopod communities in soils contaminated by heavy metals in northern France, Eur. J. Soil Sci. 2000. 51: 425-433. https://doi.org/10.1046/j.1365-2389.2000.00317.x
  • 110. Nahmani J, Lavelle P. Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France, Eur. J. Soil Biol. 2002. 38: 297-300. https://doi.org/10.1016/S1164-5563(02)01169-X
  • 111. Tajovský K. Colonization of colliery spoil heaps by millipedes (Diplopoda) and terrestrial Isopods (Oniscidea) in the Sokolov Region. Czech Republic. Restor. Ecol. 2001. 9: 365-369. DOI: 10.1046/j.1526-100X.2001.94005.x
  • 112. Dunger W, Voigtländer K. Soil fauna (Lumbricidae, Collembola, Diplopoda and Chilopoda) as indicators of soil eco-subsystem development in post-mining sites of eastern Germany–a review. Soil Org. 2009. 81: 1–51. https://soil-organisms.org/index.php/SO/article/view/184
  • 113. Godoy JAP, Fontanetti CS. Diplopods as bioindicators of soils: analysis of midgut of individuals maintained in substract containing sewage sludge. Water Air Soil Pollut. 2010. 210: 389-398. DOI: 10.1007/s11270-009-0261-z
  • 114. Kania G, Lechowski J. Bioaccumulation of some elements in the millipede Glomeris hexasticha (Brandt, 1833) (Diplopoda, Glomerida). J. Elem. 2014. 19: 155-164. DOI: 10.5601/jelem.2014.19.1.595
  • 115. Kania G. Znaczenie krocionogów (Diplopoda) w ekotoksykologii. Czy Diplopoda są bioindykatorami środowiska?, w: Maciąg K, Danielewska A. (red.), Wybrane zagadnienia z zakresu nauk biologicznych i weterynaryjnych. Wydawnictwo Naukowe TYGIEL Sp. z o. o., Lublin. 2020. 88-98. http://bc.wydawnictwo-tygiel.pl/publikacja/2962C5AA-CEDA-7383-E336-20DB1A4FB554
  • 116. Mekonen S. Soil Fauna as Webmasters, Engineers and Bioindicators in Ecosystems: Implications for Conservation Ecology and Sustainable Agriculture. Am. J. Life Sci. 2019. 7: 17-26. doi: 10.11648/j.ajls.20190701.14
  • 117. Nakamura K, Taira J. Distribution of elements in the millipede, Oxidus gracilis C. L.Koch (Polydesmida: Paradoxosomatidae) and the relation to environmental habitats. Bio-Metals, 2005. 18: 651-658. DOI: 10.1007/s10534-005-4575-z
  • 118. da Silva Souza T, Christofoletti CA, Bozzatto V, Fontanetti CS. The use of diplopods in soil ecotoxicology-a review, Ecotoxicol. Environ. Saf. 2014. 103: 68-73. doi: 10.1016/j.ecoenv.2013.10.025.
  • 119. Tracz H. Diplopoda, Chilopoda i Isopoda w waloryzacji ekosystemów leśnych Leśnego Kompleksu Promocyjnego ,,Lasy Spalsko-Rogowskie”, Studia i Materiały Centrum Edukacji Przyrodniczo Leśnej w Rogowie. 2013. 35: 36-47. https://cepl.sggw.edu.pl/studia-i-materialy-cepl-31-40/
  • 120. Tuf IH, Tufová J. Proposal of ecological classification of centipede, millipede and terrestrial isopods faunas for evaluation of habitat quality in Czech Republic, Čas. Slez. Muz. Opava, 2008. 57: 37-44. http://ekologie.upol.cz/ad/tuf/pdf/papers/Tuf+Tufova2008
Uwagi
Błędny identyfikator DOI
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b1af9c3b-6409-4b68-a388-df1fa073c67f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.