Czasopismo
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Assessment of neural networks and Imaging Spectroscopy for vegetation classification of the High Tatras
Języki publikacji
Abstrakty
This research aims to discover potential of hyperspectral remote sensing data for mapping high-mountain vegetation ecosystems. First, the importance of mountain ecosystems to global system should be stressed: due to environmental fragility and location of plant species and communities at the upper levels of habitats, mountainous ecosystems form a very sensitive indicator of global climate change. Furthermore, a variety of biotic and abiotic factors that influence spatial distribution of vegetation in the mountains are producing diverse mosaic of habitats leading to high biodiversity. Mountain plants developed specific adaptations to survive at the fringe of life (pigment content, plant tissue structure etc.). These adaptations have direct impact on their reflectance properties which can be acquired and quantified using hyperspectral imagery interpretation techniques. These changes are characterised by a large number of closely spaced spectral channels. Application of remote sensing techniques allows vegetation research and mapping in areas that are otherwise inaccessible. This could be due to low accessibility of terrain, very short vegetative period and unstable weather conditions. Mapping vegetation and its condition is often constrained or even prevented using traditional, field mapping techniques. To protect a delicate balance in mountainous environments vegetation cover (a perfect indicator of all the other components of biosphere) should be researched in detail and mapped with sufficient level of accuracy. This is of particular importance for the proper management as both anthropogenic pressure and local disturbances (avalanches, solifluction after extensive rainfalls) can have significant impact on vegetation, leading to disturbance, and eventually – disintegration of plant cover. It is anticipated, that vegetation mapping and condition analysis can be achieved using hyperspectral, high ground resolution imagery and digital and field remote sensing techniques. Artificial Neural Network (NN/ANN) algorithms use whole object characteristics (spectral, structural and/or textural properties, where the relationship between pixels are also taken into account). These relationships among the spatial patterns of the image frequently appear over natural biotopes and plant communities with closed coverage. Traditional classification methods that use parametrical approaches do not show satisfying results. The implemented neural network is the fuzzy ARTMAP (FAM) simulator. For training the neural network, particular layers of the covering vegetation classes were used that were identified via field mapping while the aircraft was operating. In the same time separate field data was collected for validation purposes too. For hyperspectral data compression the Minimum Noise Fraction transformation (MNF) was used. This method may be especially useful to separate and classify vegetation or land cover units. The High Tatras are located within the MAB Biosphere Reserve and encompasses alpine and subalpine zones of the Tatra National Park (TPN). The area extends within: 49°10’30’’–49°16’00’’ N and 19°45’30’’–20°07’30’’ E rectangle, encompassing approximately 110 km2 . However, in this publication only Polish part of the Tatra Mountains (so called “High Tatras”) was analysed (Figure 15). Vegetation in the area has been well researched (since the 1920’s), however most of the research has been carried out on transects or glades. Plant species have been well identified and described, however detailed maps of vegetation are available only for selected areas. The most of the research area is covered by natural and seminatural key units: peaty and boggy communities, avalanche meadows, tall herb communities ( Adenostylion ), grassland communities after grazing, subalpine dwarf scrub communities, willow thicket ( Chamaenerion angustifolium-Salix silesiaca community), mountain-pine scrub on silikat substrate ( Pinetum mugho carpaticum silicicolum ), mountain-pine scrub ( Pinetum mugho carpaticum silicicolum ) in a complex with epilitic lichen communities, mountain-pine scrub on calcareus substrate ( Pinetum mugho carpaticum calcicolum ), montane spruce forest ( Plagiothecio-Piceetum ) and lakes. Assessment of neural networks and Imaging Spectroscopy for vegetation classification of the High Tatras In this study a DAIS 7915 hyperspectral data was classified that was acquired on 04 August 2002 by the German Aerospace Center (DLR) in the frame of the HySens PL02_05 project. This instrument is a 79-channel imaging spectrometer operating in the wavelength range 0.4-12.5 μ m with 15 bit radiometric resolution. After preprocessing the obtained ground resolution was 3 meters. The classification procedures (Figure 21) began with a preparation of reference layers of 42 dominant classes for the fuzzy ARTMAP teaching (Figure 22A). This stage based on terrain acquired data. For validation’s map Spectral Angle Mapper (SAM) was used; in the first step, basing on field sampled polygons and endmembers obtained from DAIS data (corresponding to the key areas from the ground mapping) a pre-validation map was created. In the second step, basing on terrain mapping validation polygons of each analysed class were reselected (Figure 22B, Table 4). Parallel to this procedure, an exploration from all 79 bands covering the VIS-TIR regions of the spectrum was made. The first step was a band’s information analysis and the reselection of 60 spectral bands was made (Figures 23 and 24). The second step was to reduce the data dimensionality to 40 original and 20 MNF bands. For the actual classification of the plant communities, a fuzzy ARTMAP simulator was used. In order to obtain the desired results 5000 and 10 000 iterations were used while training the Neural Net. Each set of image bands and reference layer contained a detailed DEM of analysed area. Classification accuracy was measured using ENVI software’s algorithms based on test and training sets. The overall accuracy was measured throughout a pixel by pixel comparison post classification images to ground truth map (prepared from SAM and field’ verified mapping). The final results of the High Tatras polygon are shown in Tables 5-24, and the classification images present in Figures 28-35. Generally, the forty-band set of input data offered higher accuracy (1-2%) than the twenty-MNF-band set (Tables 23 and 24). In the first case, the overall accuracy value achieved was 88.6%, and kappa coefficient was 0.8740. In the case of 20 MNF bands, the overall accuracy was 82.6%, and kappa coefficient 0.8310. Two of fourt-two analysed classes weren’t classified properly: Salicetum herbaceae in a complex with Empetro-Vaccinietum (class# 6) and grassland communities after grazing in a complex with ruderal communities (#32). The worst classification results were achieved in the range of 44-80% for Oreochloo distichae-Juncetum trifidi scree form with Juncus trifidus (#14), Festuca picta community (#30), Vaccinium myrtilus community in a complex with tall herb communities (#36) and willow thicket – Chamaenerion angustifolium-Salix silesiaca community (#37). The best results were achieved for: Oreochloo distichae-Juncetum trifidi typicum (#8); Oreochloo distichae-Juncetum tri fi di sphagnetosum (#11), Oreochloo distichae-Juncetum trifidi subalpine anthropogenic form (#16), Caricetum fuscae subalpinum (#21), Empetro-Vaccinietum in a complex with Pinetum mugho (34), mountain-pine scrub on silikat substrate (38) and waters Hyperspectral data showed significant potential for discriminating different vegetation types. The use of an artificial neural network is a proper method for mapping plant communities; it should be a supporting tool for traditional vegetation mapping. The increased number of bands while classification is being done (more than 40) does not offer a significantly better overall accuracy, but the worst results are not so low like in the case of twenty-MNF band sets. The processing time of MNF-transformed data was significantly shorter while provides less accurate classification results (3-6% less overall accuracy compared to using forty-band sets). A long training time is the most inconvenient aspect of this kind of classification.
Czasopismo
Rocznik
Tom
Strony
1--113
Opis fizyczny
Bibliogr. 188 poz., mapy, rys., tab.,
Twórcy
autor
- Katedra Geoinformatyki i Teledetekcji Wydziału Geografii i Studiów Regionalnych Uniwersytetu Warszawskiego , bogdan@uw.edu.pl
Bibliografia
- 1. Adams B., Smith M.O., Gillespie A.R., 1993, Imaging Spectroscopy: Interpretation Based on Spectral Mixture Analysis. W: C. M. Pieters, P. Englerty (red.), Remote Geochemical Analysis: Elemental & Mineralogical Composition, Cambridge University Press, s. 145-166.
- 2. Adams W.W. III, Demmig-Adams B., Logan B.A., Barker D.H., Osmond C.B., 1999, Rapid changes in xanthophyll cycledependent energy dissipation and photosystem II efficiency in two vines, Stephania japonica and Smilax australis, growing in the understory of an open Eucalyptus forest. Plant, Cell and Environment, vol. 22, s. 125-136.
- 3. Aldakheel Y.Y., Danson F.M., 1997, Spectral reflectance of dehydrating leaves: measurements and modelling. International Journal of Remote Sensing, vol. 18, s. 3683-3690.
- 4. Amari S.I., 1972, Learning patterns and pattern sequences by self-organizing nets of threshold elements. IEEE Transactions on Computers, Vol. 21, s. 1197-1206.
- 5. Anderson M.C., Kustas W.P., Norman J.M., 2003, Upscaling and downscaling – a regional view of the soil–plant–atmosphere continuum. Agronomy Journal, Vol. 95, s. 1408-1423.
- 6. Anderson J., Silverstein J., Ritz S., Jones R., 1977, Distinctive features, categorical perception, and probability learning: Some applications of a neural model. Psychological Review, Vol. 84, s. 413-451.
- 7. Ashton E.A., Schaum A., 1998, Algorithms for the Detection of Sub-Pixel Targets in Multispectral Imagery. Photogrammetric Engineering & Remote Sensing, Vol. 64, nr 7, s. 723-731.
- 8. Balcerkiewicz S., 1984, Roślinność wysokogórska Doliny Pięciu Stawów Polskich w Tatrach i jej przemiany antropogeniczne. Wydawnictwo Naukowe UAM, Seria Biologia, 25, Poznań, s 1-191.
- 9. Balcerkiewicz S., Wojterska M., 1978, Sigmassoziationen in der Hohen Tatra. W: R. Tèuxen (red.), Assoziationskomplexe (Sigmeten) und ihre praktische Anwendung. International Society for Plant Geography and Ecology. J. Cramer, Vaduz, s. 161-177.
- 10. Ball J.T., Woodrow I.E., Berry J.A., 1986, A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. W: J. Biggins (red.), Progress in photosynthesis research. Nijhoff, Dodrecht, Holandia, s. 221–225.
- 11. Barnes P.W., Flint S.D., Caldwell M. M., 1990, Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation. American Journal of Botany, Vol. 77, s. 1354-1360.
- 12. Barton C.V.M, North P.R.J., 2001, Remote sensing of canopy light use efficiency using the photochemical reflectance index – model and sensitivity analysis. Remote Sensing of Environment, Vol. 78, s. 264-273.
- 13. Benediktsson J.A., 1995, Classification and Feature Extraction of AVIRIS Data. IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, nr 5, s. 1194-1205.
- 14. Boardman J.W., 1994, Geometric mixture analysis of imaging spectrometery data. Procedings of International Geoscience and Remote Sensing Symposium, Vol. 4, s. 2369-2371.
- 15. Boardman J.W., Kruse F.A., 1994, Automated spectral analysis: A geological example using AVIRIS data, northern Grapevine Mountains. Nevada. W: Proceedings, Tenth Thematic Conference, Geologic Remote Sensing, 9-12 May 1994, San Antonio, Texas, s. 407-418.
- 16. Bogusz W., Garbarczyk J., Krok F., 1997, Podstawy fizyki. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, s. 569.
- 17. Caldwell M.M., 1971, Solar ultraviolet radiation and the growth and development of higher plants. W:A.C. Giese (red.), Photophysiology, Academic Press, New York, s. 131-177.
- 18. Carder K.L., Reinersman P., Chen R.F., Muller-Karger F., Davis C.O., Hamilton M.K., 1993, AVIRIS calibration and application in coastal oceanic environments. Remote Sensing of Environment, Vol. 44, , s. 205-216.
- 19. Carpenter G.A., 1997, Distributed learning, recognition, and prediction by ART and ARTMAP neural networks. Neural Networks, Vol. 10, s. 1473-1494.
- 20. Carpenter G.A., Grossberg S., 1987, A massively parallel architecture for a self organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing , nr 37, s. 54-115.
- 21. Carpenter G.A., Grossberg S., 1990, ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures. Neural Networks, Vol. 3, s. 129-152.
- 22. Carpenter G.A., Grossberg S., 2003, Adaptive Resonance Theory. W: M.A. Arbib (red.), The Handbook of Brain Theory and Neural Networks, 2nd Edition. MIT Press, Cambridge, Mass.MA, s. 344.
- 23. Carpenter G.A., Grossberg S., Markuzon N., Reynolds J.H., Rosen D.B., 1992, Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Transactions on Neural Networks, 3, s. 698-713.
- 24. Carpenter G.A., Grossberg S., Reynolds J.H., 1991, ART-MAP: A self-organizing neural network architecture for fast supervised learning and pattern recognition. Neural Networks, Vol. 4, s. 565-588.
- 25. Carpenter G.A., Grossberg S., Reynolds J.H., 1995, A Fuzzy ARTMAP Nonparametric Probability Estimator for Nonstationary Pattern Recognition Problems. IEEE Transactions on Neural Networks, Vol. 6, nr 6, s. 1330-1336.
- 26. Carpenter G.A., Grossberg S., Rosen D.B., 1991, Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks, Vol. 4, s. 759-771.
- 27. Carrère V., Conel J., 1993, Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm – Sensitivity analysis and application to Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. Remote Sensing of Environment, Vol. 44, s. 179-204.
- 28. Carter G.A., 1994, Ratios of leaf reflectance in narrow wave-bands as indicators of plant stress. International Journal of Remote Sensing, Vol. 15, s. 697-703.
- 29. Chang C.-I., 2003, Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Kluwer Academic/Plenum Publishers, New York, s. 374.
- 30. Chang C.-I. Du Q., 2004, Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Transaction on Geoscience and Remote Sensing, Vol.42, no. 3, s. 608-619.
- 31. Chang C.-I, Plaza A., 2006, A Fast Iterative Algorithm for Implementation of Pixel Purity Index. IEEE Geoscience and Remote Sensing Letters, Vol. 3, no. 1, s. 63-67.Chaudhry F.A., 2005, Pixel Purity Index-Based Endmember Extraction for Hyperspectral Data Exploitation, University of Maryland, Department of Computer Science and Electrical Engineering, MS thesis.
- 32. Chiu H.Y., Collins W.E., 1978, A spectroradiometer for air-borne remote sensing. Photogrammetric Engineering and Remote Sensing, Vol. 44, s. 507-517.
- 33. Chyliński E., Chyliński J., 2009, Artificial Inteligence. C LabTech. Ze strony http://www.ai.c-labtech.net/sn/sneuro.html#back.
- 34. Ciołkosz A., Jakomulska A., 2004, Przetwarzanie cyfrowych zdjęćsatelitarnych. Symulacja pracy komputera za pomocą papieru i ołówka. Wydział Geografii i Studiów Regionalnych, Uniwersytet Warszawski, Warszawa, s. 116.
- 35. Ciołkosz A., Miszalski J., Olędzki J.R., 1999, Interpretacja zdjęć lotniczych. PWN, Warszawa.
- 36. Clark M.L., Roberts D.A., Clark D.B., 2005, Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sensing of Environment, Vol. 96, s. 375-398.
- 37. Cochrane M.A., 2000, Using vegetation reflectance variability for species level classification of hyperspectral data. International Journal of Remote Sensing, Vol. 21, s. 2075-2087.
- 38. Cochrane M.A., 2001, Synergistic interactions between habitat fragmentation and fire in evergreen tropical forests. Conservation Biology, Vol. 15, nr 6, s. 1515-1521.
- 39. Cochrane M.A., 2002, Spreading like wild fire – tropical forest fires in Latin America and the Caribbean: prevention, assessment and early warning. United Nations Environment Program, Regional Office for Latin America and the Caribbean. UNEP, s. 96.
- 40. Collins W., Chang S.H., Kuo J.T., Rowan L.C., 1981, Remote mineralogical analysis using a high-resolution spectrometer: Preliminary results of the Mark II system. IEEE International Geoscience and Remote Sensing Symposium, Vol. 1, Washington D.C., Digest, s. 327-334.
- 41. Crowley J.K., 1993, Mapping playa evaporite mineral with AVIRIS data: A first report from Death Valley, California. Remote Sensing of Environment, Vol. 44, s. 337-356.
- 42. Dagher I., 2006, L-p Fuzzy ARTMAP neural network architecture. Soft Computing, Vol. 10, s. 649–656.
- 43. Datt B., 1999, Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. International Journal of Remote Sensing, Vol. 20, s. 2741-2759.
- 44. Datt B., 2000, Red edge shifts for detecting phenologic change and stress symptoms in evergreen eucalyptus forests. Proceedings of 10th Australasian Remote Sensing and Photogrammetry Conference,Australia, Adelaide, s. 863-874.
- 45. Dawson T.P., Curran P.J., Plummer S.E., 1998, The biochemical decomposition of slash pine needles from reflectance spectra using neural networks. International Journal of Remote Sensing, Vol. 19, s. 1433-1438.
- 46. de Jong S.M., van der Meer F.D., (red.), 2004, Remote Sensing Image Analysis. Including the Spatial Domain. Remote sensing and digital image processing. Kluwer Academic Publishers, Dordrecht, s. 360.
- 47. Dehaan R., Louis J., Wilson A., Hall A., Rumbachs R., 2007, Discrimination of blackberry (Rubus fruticosus sp. agg.) using hyperspectral imagery in Kosciuszko National Park, NSW, Australia. ISPRS Journal of Photogrammetry & Remote Sensing, Vol. 62, s. 13-24.
- 48. Delalieux S., Somers B., Haest B., Kooistra L., Mücher C.A., Vanden Borre J., 2010, Monitoring heathland habitat status using hyperspectral image classification and unmixing. Proceedings of the 2nd Whispers on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), IEEE GRSS, University of Iceland, Reykjawik, s. 50-54
- 49. Dennison P.E., Halligan K.Q., Roberts D.A., 2004, A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper. Remote Sensing of Environment, Vol. 93, s. 359-367.
- 50. Elvidge C.D., Chen, Z., Groeneveld, D.P., 1993, Detection of trace quantities of green vegetation in 1990 AVIRIS data. Remote Sensing of Environment, Vol. 44, s. 271-280.
- 51. Falińska K., 1997, Ekologia roślin, Wydawnictwo Naukowe PWN, Warszawa
- 52. Filippi A.M., Jensen J.R., 2006, Fuzzy learning vector quantization for hyperspectral coastal vegetation classification. Remote Sensing of Environment, Vol. 100, s. 512-530.
- 53. Fourty Th., Baret F., 1998, On spectral estimates of fresh leaf biochemistry. International Journal of Remote Sensing, Vol. 19, s. 1283-1297.
- 54. Gamon J.A., Field C.B., Roberts D.A., Ustin S.L., Valentini R., 1993, Functional patterns in an annual grassland during and AVIRIS overflight. Remote Sensing of Environment, Vol. 44, s. 239-254.
- 55. Gao B., Goetz A.F.H., 1990, Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data. Journal of Geophysical Research, Vol. 95, nr D4, s. 3549-3564.
- 56. Gawroński R., 1970, Rozpoznawanie i decyzja, PWN, Warszawa.
- 57. Gitelson A.A., Merzlyak M.N., 1997, Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, Vol. 18, s. 2691-2697.
- 58. Glossary of remote sensing technology, 2000, Committee on Earth Observations Satellites CNES (CEOS 2000). http://ceos.cnes.fr:8100/cdrom-00b2/ceos1/science/glossary/gloss.htm.
- 59. Goetz A.F.H., Vane G., Solomon J.E., Rock B.N., 1985, Imaging Spectrometry for Earth Remote Sensing. Science, Vol. 228, nr 4704, s. 1147-1153.
- 60. Green A.A., Berman M., Switzer P., Craig M.D., 1988, A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, Vol. 26, nr 1, s. 65-74.
- 61. Greniewski H., 1959, Elementy cybernetyki – sposobem matematycznym wyłożone. PWN, Warszawa, s. 208.
- 62. Guyon I., Weston J., Barnhill S., Vapnik V., 2002, Gene selection for cancer classification using support vector machines. Machine Learning, Vol. 46, s. 389-422.
- 63. Habermeyer M., Holzwarth S., Mueller A., Mueller R., Richter R., Seitz K.-H., Seifert P., Strobl P., 2003, Developing a Fully Automatic Processing Chain for the Upcoming Hyperspectral Scanner ARES. W: A. Mueller, S. Holwarth (red), Proceedings of the 3rd EARSeL Workshop on Imaging Spectroscopy. Wydanie elektroniczne na CD: ISBN 2-908885-26-3.
- 64. Hall C.R., Hinkle C.R., Knott W.M., Summerfield B.R., 1992, Environmental monitoring and research at the John F. Kennedy space center. Journal of the Florida Medical Association, Vol. 79, nr 8, s. 545-552.
- 65. Hamilton M.K., Davis C.O., Rhea W.J., Pilorz S.H., Carder K.L., 1993, Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data. Remote Sensing of Environment, Vol. 44, s. 217-230.
- 66. Hebb D.O., 1949, The organization of behavior: A neuropsychological theory. John Wiley and Sons, New York, s. 335.
- 67. Hejmanowska B., Drzewiecki W., Głowienka E., Mularz S., Zagajewski B., Sanecki J., 2006, Próba integracji satelitarnych obrazów hiperspektralnych z nieobrazowymi naziemnymi danymi spektrometrycznymi na przykładzie Zbiornika Dobczyckiego. Archiwum Fotogrametrii, Kartografii i Teledetekcji, Vol. 16, s. 207–216.
- 68. Hejmanowska B., Głowienka E., 2004,Wstępne wyniki pomiarów spektrometrycznych i klasyfikacji obrazów hiperspektralnych rekultywowanego obszaru Tarnobrzeskiego Zagłębia Siarkowego. Geoinformatica Polonica, Tom 6, Prace Komisji Geoinformatyki PAU, Kraków, s. 49-58.
- 69. Hines E.L., 2009, Intelligent Systems Engineering. University of Warwick, School of Ingeneering, s. 45. http://www.eng.warwick.ac.uk/eng/staff/elh/ise/session06/lec4.pdf (29.01.2009).
- 70. Hoerig B., Kuehn F., Oschuetz F., Lehmann F., 2001, Hyperspectral remote sensing to detect hydrocarbons. International Journal of Remote Sensing, Vol. 22, s. 1413-1422.
- 71. Holzwarth S., Mueller A., Habermeyer M., Richter R., Haushold A., Strobl P., Thiemann S., 2004, HySens – DLR’s hyperspectral airborne campaigns 2000-2002. W: R. Goossens (red.), Remote Sensing in Transition. Proceedings of the 23rd Symposium of the European Association of Remote Sensing Laboratories, Millpress, Rotterdam, s. 471-478.
- 72. Holzwarth S., Mueller A., Hausold A., Habermeyer M., Richter R., Thiemann S., Strobl P., 2003, HySens DAIS/ROSIS Imaging Spectrometers at DLR. W: A. Mueller, S. Holwarth (red.), Proceedings of the 3rd EARSeL Workshop on Imaging Spectroscopy. Wydanie elektroniczne CD: ISBN 2-908885-26-3.
- 73. Jakomulska A., Sobczak M., 2001, Korekcja radiometryczna obrazów satelitarnych - metodyka i przykłady. Teledetekcja Środowiska, Tom 32, Klub Teledetekcji Środowiska PTG, Warszawa, s. 152-171.
- 74. Jarvis P.G., 1993. Prospects for bottom-up models. W: J.R. Ehleringer C.B. Field (red.), Scaling physiological processes leaf to globe. Academic Press, San Diego, s. 115–126.
- 75. Jarvis P.G., 1995, Scaling processes and problems. Plant, Cell and Environment, Vol. 18, s. 1079-1089.
- 76. Jaworowski J., Tadeusiewicz R., 1974, ART 73b – język do przetwarzania informacji akustycznej dla potrzeb sterowania cyfrowego. W: Materiały konferencyjne Cyfrowe systemy sterowania, Wrocław, s. 21-27.
- 77. Jollineau M.Y., Howarth P.J., 2008, Mapping an inland wetland complex using hyperspectral imagery. International Journal of Remote Sensing, Vol. 29, nr 12, s. 3609-3631.
- 78. Joshi C.M., de Leeuw J., Skidmore A.K., 2006, Upscaling species invasion patterns from local to regional for forest eco-system management. W: Proceedings of ISPRS mid-term symposium 2006 remote sensing: from pixels to processes, ITC Enschede, The Netherlands, s. 1-6.
- 79. Kavzoglu T., Mather P.M., 2003, The use of backpropagating artificial neural networks in land cover classification. International Journal of Remote Sensing, Vol. 24, nr 23, s. 4907-4938.
- 80. Kempisty M., (red.), 1973, Mały słownik cybernetyczny. Wiedza Powszechna, Warszawa, s. 533.
- 81. Kirkpatrick S., Gelatt C.D., Vecchi M.P., 1983, Optimization by simulated annealing. Science, Vol. 220, s. 671-680.
- 82. Klińska A., 2004, Badanie głębokości optycznej atmosfery nad wybranymi regionami. Wydział Geografii i Studiów Regionalnych Uniwersytetu Warszawskiego, praca magisterska, opiekun prof. dr hab. J. R. Olędzki, maszynopis.
- 83. Kohonen T., 1990, The self organising maps. Proceedings of IEEE, Vol. 78, s. 1464-1479.
- 84. Kokaly R.F., Despain D.G., Clark R.N., Livo K.E., 2003, Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data. Remote Sensing of Environment, Vol. 84, s. 437-456.
- 85. Korbicz J., 2008, Artificial intelligence in technical diagnostics. Diagnostyka, Vol. 46, nr 2, s. 7-16.
- 86. Korbicz J., Kowal M., 2007, Neuro-fuzzy networks and their application to fault detection of dynamical systems. Engineering Applications of Artificial Intelligence, Vol. 20, s. 609-617.
- 87. Korbicz J., Obuchowicz A., Uciński D., 1994, Sztuczne sieci neuronowe. Podstawy i zastosowania. Akademicka Oficyna Wydawnicza, Warszawa, s. 253.
- 88. Kozłowska A., Plit J., 2002, Mapy roślinności wysokogórskiej Tatr (Od Krzyżnego do Przełęczy Kondrackiej) w skali 1: 10000 i 1:20000. W: W. Borowiec, A. Kotarba, A. Kownacki, Z. Krzan, Z. Mirek (red.), Przemiany środowiska przyrodniczego Tatr. Część 2 – Nauki Biologiczne, Tatrzański Park Narodowy i Polskie Towarzystwo Przyjaciół Nauk o Ziemi, Oddział Kraków, Wydawnictwo Instytutu Botaniki PAN w Krakowie, Kraków-Zakopane, s. 203-210.
- 89. Kozłowska A., 2006, Detailed mapping of high-mountain vegetation in the Tatra Mts. Polish Botanical Studies, Vol. 22, s. 333-341.
- 90. Kozłowska A., Plit J., 2002. Mapy roślinności wysokogórskiej Tatr (Od Krzyżnego do Przełęczy Kondrackiej) w skali 1: 10000 i 1:20000. W: W. Borowiec, A. Kotarba, A. Kownacki, Z. Krzan, Z. Mirek (red.), Przemiany środowiska przyrodniczego Tatr. Część 2 - Nauki Biologiczne, Tatrzański Park Narodowy i Polskie Towarzystwo Przyjaciół Nauk o Ziemi, Oddział Kraków, Wydawnictwo Instytutu Botaniki PAN w Krakowie, Kraków-Zakopane, s. 203-210.
- 91. Kozłowska A., Plit J., Zagajewski B., 2006, High-mountain vegetation of the Tatras (central part). Geographica Polonica "Vegetation maps as a tool in environmental assessment and spatial planning", Vol. 79, nr 1, Spring 2006. Polish Academy of Sciences Institute of Geography and Spatial Organization, Warsaw.
- 92. Kramer H.J., 1994, Observation of the Earth and Its Environment. Survey of Missions and Sensors, Springer-Verlag, s. 580.
- 93. Krówczyńska M., 2004, Wykorzystanie spektralnych i strukturalnych cech obiektów odwzorowanych na zdjęciach satelitarnych w kartowaniu użytkowania ziemi. Promotor: prof. dr hab. Andrzej Ciołkosz. Wydział Geografii i Studiów Regionalnych UW, Warszawa, maszynopis.
- 94. Kruse F.A., 1988, Use of Airborne Imaging Spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada and California. Remote Sensing of Environment, Vol. 24, s. 31-51.
- 95. Kruse F.A., Boardman J.W., Huntington J.F., 1999, Fifteen years of hyperspectral data: Northern Grapevine Mountains, Nevada. W: Proceedings of the 8th JPL Airborne Earth Science Workshop. Jet Propulsion Laboratory Publication, JPL Publication 99-17, s. 247-258.
- 96. Kruse F.A., Lefkoff A.B., 1993, Knowledge-based geologic mapping with imaging spectrometers. Remote Sensing Reviews, NASA Innovative Research Program (IRP) results, Vol. 8, s. 3-28.
- 97. Kruse F.A., Lefkoff A.B., Boardman J.B., Heidebrecht K.B., Shapiro A.T., Barloon P.J., Goetz A.F.H., 1993, The Spectral Image Processing System (SIPS) – Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sensing of Environment, Vol. 44, s. 145-163.
- 98. Kulikowski J.L., 1972, Cybernetyczne układy rozpoznające. PWN, Warszawa.
- 99. Kumar L., Schmidt K., Dury S., Skidmore A., 2001, Imaging Spectrometry and Vegetation Science. W: F.D. van der Meer, S.M. de Jong (red.), Imaging spectrometry: basic principles and prospective applications. Kluwer Academic, Dordrecht, s. 405.
- 100. Lang H.R., Adams S.L., Conel J.E., McGuffie B.A., Paylor E.D., Walker R.E., 1987, Multispectral remote sensing as stratigraphic tool, Wind River Basin and Big Horn Basin areas. American Association of Petroleum Geologists Bulletin, Vol. 71, nr 4. Wyoming, s. 389-402.
- 101. Lange O., 1965, Wstęp do cybernetyki ekonomicznej. PWN, Warszawa, s. 178.
- 102. Lawrence R.L., Wood S.D., Sheley R.L., 2006, Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (random forest). Remote Sensing of Environment, Vol. 100, nr 3, s. 356-362.
- 103. Lettvin J.Y., Maturana H.R., Mcculloch W.S., Pitts W.H., 1968, What the frog's eye tells the frog's brain. W: W.C. Corning, M. Balaban (red.), The mind: biological approaches to its functions, Wiley, New York, s. 233-258.
- 104. Lichtenthaler H.K., Wellburn R.R., 1983, Determination of total caretonoids and chlorophylls a and b in leaf extracs in different solvents. Biochemical Society Transactions, Vol. 603, s. 591-592.
- 105. Lu S., Oki K., Shimizu Y., Omasa K., 2007, Comparison between several feature extraction/classification methods for mapping complicated agricultural land use patches using airborne hyperspectral data. International Journal of Remote Sensing, Vol. 28, nr 5, s. 963-984.
- 106. Lucieer A., 2006, Fuzzy classification of sub-Antarctic vegetation on Heard Island based on high-resolution satellite imagery. IEEE International Geoscience and Remote Sensing Symposium (IGARSS '06), Denver, Colorado, s. 2777-2780.
- 107. Mader S., Vohland M., Jarmer T., Casper M., 2006, Crop classification with hyperspectral data of the HyMAP sensor using different feature extraction techniques. Proceedings of the 2nd Workshop of the EARSeL SIG on Land Use and Land Cover, Center for Remote Sensing of Land Surfaces,EARSeL, Bonn, s. 96-101.
- 108. Mandic D.P., Chambers J.A., 2001, Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures, and Stability. Adaptive and learning systems for signal processing, communications, and control. John Wiley & Sons, New York, s. 318.
- 109. McClelland J.L., Rumelhart D.E., PDP Research Group, 1986, Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol. 2, MIT Press, Cambridge, MA.
- 110. McCulloch W.S., Pitts W.H., 1943, A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, Vol. 5, s. 115-119.
- 111. Minsky M., Papert S., 1969, Perceptrons. An Introduction to Computational Geometry. MIT Press, Cambridge, MA, s. 258.
- 112. Mirek Z., (red.), 1996, Przyroda Tatrzańskiego Parku Narodowego. Tatrzański Park Narodowy, Instytut Botaniki im. W. Szafera PAN. Kraków–Zakopane, s. 787.
- 113. Morecki A., Ekiel J., 1979, Cybernetyczne systemy ruchu kończyn zwierząt i robotów. PWN, Warszawa, s. 275.
- 114. Mueller A., 2005, Spectroscopy in Earth Observation: From Technology Demonstrators to Operational Services. 4th EARSeL Workshop on Imaging Spectroscopy, keynote lecture, Warsaw.
- 115. Nolin A.W., Dozier J., 1993, Estimating snow grain size using AVIRIS data. Remote Sensing of Environment, Vol. 44, nr 2-3, s. 231-238.
- 116. North P.R.J., 2002, Estimation of fAPAR, LAI and vegetation fractional cover from ATSR-2 imagery. Remote Sensing of Environment, Vol. 80, s. 114-121.
- 117. Nowotka M., Kursa M.B., Rudnicki W.R., Zagajewski B., 2010 (w przygotowaniu). Application of Random Forests and Support Vector Machine algorithms for classification of land coverage in multi- environment using hyper-spectral data. maszynopis.
- 118. Oldeland J., Dorigo W., Lieckfeld L., Lucieer A., Jürgens N., 2010, Combining vegetation indices, constrained ordination and fuzzy classification for mapping semi-natural vegetation units from hyperspectral imagery. Remote Sensing of Environment, Vol. 114, s. 1155–1166.
- 119. Olesiuk D., Bachmann M., Habermeyer M., Heldens W., Zagajewski B., 2009, Crop classification with neural networks using airborne hyperspectral imagery. Roczniki Geomatyki, Vol. VII, nr 32. Warszawa, s. 107-112.
- 120. Olesiuk D., Zagajewski B., 2008, Wykorzystanie obrazów hiperspektralnych do klasyfikacji pokrycia terenu zlewni Bystrzanki. Teledetekcja Środowiska, Tom 39, Klub Teledetekcji Środowiska PTG, Warszawa, s. 125-148.
- 121. Osińska-Skotak K., Kruk M., Mróz M., Szumiło M., 2005, CHRIS/PROBA superspectral data for inland water quality studies. W: B. Zagajewski, M. Sobczak (red.), Imaging Spectroscopy. New quality in environmental studies, EARSeL, Warsaw University, s. 356-366.
- 122. Osowski S., 1996, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa, s. 352.
- 123. Osowski S., 2006, Sieci neuronowe do przetwarzania informacji. Oficyna Wydawnicza PW, Warszawa, s. 422.
- 124. Pal M., Mather P.M., 2006, Some issues in the classification of DAIS hyperspectral data. International Journal of Remote Sensing, Vol. 27, nr 14, s. 2895-2916.
- 125. Pawłowski B., 1956, Flora Tatr. Rośliny naczyniowe, T. I. PWN, Warszawa.
- 126. Pawłowski B., Sokołowski M., Wallisch K., 1928, Zespoły roślin w Tatrach, Cz. VII. Zespoły roślinne i flora doliny Morskiego Oka. Rozprawy Wydziału Matematyczno-Przyrodniczego PAU, Tom 67, PAU, Kraków, s. 171-311.
- 127. Petykiewicz J., 1986, Optyka falowa. PWN, Warszawa, s. 278.
- 128. Pieters C.M., Mustard J.F., 1988, Exploration of crustal/mantle material for the Earth and Moon using reflectance spectroscopy. Remote Sensing of Environment, Vol. 24, s. 151-178.
- 129. Plummer S. E., North P. R. J., Briggs, S. A., 1994, The Angular Vegetation Index: an atmospherically resistant index for the second along track scanning radiometer (ATSR-2). Proceedings of the 6th Symposium on Physical Measurements and Spectral Signatures in Remote Sensing, CNES, Toulouse, s. 717-722.
- 130. Proceedings of the AVIRIS performance Evaluation Workshop, 1988. The Jet Propulsion Laboratory, JPL 83-88, s. 184 (ftp://popo.jpl.nasa.gov/pub/docs/workshops/aviris.proceedings.html).
- 131. Ramachandra T.V., Uttam K., 2005, Image Fusion in GRDSS for Land Cover Mapping. Geomatics. Map India, New Delhi, s. 1-22.
- 132. Ray T.W., Murray B.C., 1996, Nonlinear Spectral Mixing in Desert Vegetation. Remote Sensing of Environment, Vol. 55, s. 59-64.
- 133. Richter R., 2004, Atmospheric/topographic correction for air-borne imager. ARTCOR-4 User Guide, Version 3.1. DLR, German Aerospace Center, Remote Sensing Data Center, s. 75.
- 134. Richter R., Schläpfer D., 2002, Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/Topographic Correction. International Journal of Remote Sensing, Vol. 23, no. 13, s. 2631-2649.
- 135. Roberts D.A., Smith M.O., Adams, J.B., 1993, Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data. Remote Sensing of Environment, Vol. 44, s. 255-269.
- 136. Rocki K., 2007, Zastosowanie sieci neuronowych typu ART do lokalizacji i rozpoznawania obiektów przy użyciu sygnału wizyjnego. Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych, Instytut Automatyki i Informatyki Stosowanej, Warszawa. Praca inżynierska napisana pod opieką prof. dr hab. Cezarego Zielińskiego, s. 83.
- 137. Rosenblatt F., 1958, The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review, Vol. 65, nr 6. Cornell Aeronautical Laboratory, s. 386-408.
- 138. Ruban A.V., Horton P., Young A.J., 1993, Aggregation of higher plant xanthophylls: Differences in absorption spectra and in the dependency on solvent polarity. Journal of Photochemistry and Photobiology, B: Biology, Vol. 21, nr 2-3, s. 229-234.
- 139. Rumelhart D.E., McClelland J.L., PDP Research Group, 1986, Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol. 1, MIT Press, Cambridge, MA
- 140. Russell S.J., Norvig P., 2003, Artificial Intelligence. A Modern Approach.Upper Saddle River, NJ: Prentice Hall, s. 1132.
- 141. Rutkowska D., Piliński M., Rutkowski L., 1997, Sieci neuronowe, algorytmy genetyczne i systemy rozmyte. Wydawnictwo Naukowe PWN, Warszawa.
- 142. Schaepman M.E., 1996, Michael Schaepman's Comprehensive List of Imaging Spectrometers. http://www.geo.unizh.ch/~schaep/research/apex/is_list.html. 06.11.1996.
- 143. Schläpfer D., Richter R., 2002, Geo-atmospheric Processing of Airborne Imaging Spectrometry Data Part 1: Parametric Orthorectification. International Journal of Remote Sensing, Vol. 23, nr 13, s. 2609-2630.
- 144. Schmidtlein S., Zimmermann P., Schüpferling R., Weiß C., 2007, Mapping the floristic continuum: Ordination space position estimated from imaging spectroscopy. Journal of Vegetation Science, Vol. 18, s. 131-140.
- 145. Schwarz J., Staenz K., 2001, Adaptive threshold for spectral matching of hyperspectral data. Canadian Journal of Remote Sensing, Vol. 27, s. 216-224.
- 146. Schwengerdt R.A., 1997, Remote sensing: models and methods for image processing. Academic Press, New York, s. 447.
- 147. Seibert P., 1974, Die Rolle des Masstabes bei der Abgrenzung von Begetationseinheiten. W: W.H. Sommer, R. Tuexen (red.), Tatsachen und Probleme der Grenzen in der Vegetation. Bericht ueber das Internationale Symposium der Internationalen Vereinigung fuer Vegetationskunde in Rinteln 8-11 April 1968, Verlag J. Cramer, Lehre, s. 103-118.
- 148. Sevrani F., Abe K., 2000, On the Synthesis of Brain-State-in-a-Box Neural Models with Application to Associative Memory. Neural Computation, Vol. 12, nr 2. MIT Press Cambridge, MA, s. 451-472.
- 149. Shaw D.T., Malthus T.J., Kupiec J.A., 1998, High-spectral resolution data for monitoring Scots pine (Pinus sylvestris L.) regeneration. International Journal of Remote Sensing, Vol. 19, nr 13, s. 2601-2608.
- 150. Shepard R.D., 1962, The analysis of proximities: Multidimensional scaling with an unknown distance function. Psychometrika, vol. 27, s. 219-246.
- 151. Sitek Z., 1992, Zarys Teledetekcji lotniczej i satelitarnej. CzęśćI – Pozyskiwanie danych, Część II – Przetwarzanie danych. Skrypty uczelniane, nr 1239. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków, s. 304.
- 152. Sitek Z., 2000, Wprowadzenie do teledetekcji lotniczej i satelitarnej. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków, s. 354.
- 153. Słownik Geoinformatyczny PAU, 2001, Wielojęzyczny interdyscyplinarny terminologiczny słownik i leksykon geoinformatyczny. Dział fotogrametria i teledetekcja. Wersja internetowa. http://slownik.fotogrametria.agh.edu.pl/index.php. (28.03.2007).
- 154. Solberg R., Wężyk P., 2000, Forest Environmental Monitoring and Management System „FOREMMS” – contribution to the development of sustainable use of natural resources. W: S. Zihlavnik, L. Scheer (red.), Application of Remote Sensing in Forestry, Zvolen, Slovakia, s. 241-255.
- 155. Strobl P., Richter R., Lehmann F., Müller A., Zhukov B., Oertel D., 1996, Preprocessing for the Airborne Imaging Spectrometer DAIS 7915. SPIE Proceedings, Vol. 2758, s. 375-382.
- 156. Suits G.H., 1983, The nature of electromagnetic radiation. W: R.N. Colwell (red), Manual of remote sensing, Vol. 1, ASPRS, Falls Church, Virginia, USA.
- 157. Swain P.H., Davis S.M., 1978, Remote Sensing: The Quantitative Approach. McGraw-Hill Inc, s. 396.
- 158. Szafer W., Pawłowski B., Kulczyński S., 1923, Zespoły roślin w Tatrach. Cz. I. Zespoły roślin w Dolinie Chochołowskiej. Bulletin International de l’Academie Polonaise des Sciences et des Lettres, Classe des Sciences Mathématiques et Naturelles. Serie B., Suppl. III, s. 1-66.
- 159. Szafer W., Pawłowski B., Kulczyński S., 1927, Zespoły roślin w Tatrach. Cz. I. Zespoły roślin w Dolinie Kościeliskiej. Bulletin International de l’Academie Polonaise des Sciences et des Lettres, Classe des Sciences Mathématiques et Naturelles. Serie B., Suppl. II, s. 13-78.
- 160. Szostak W., 1978, Cybernetyka społeczna. Skrypty Uczelniane Nr 300. Uniwersytet Jagielloński, Kraków, s. 136.
- 161. Tadeusiewicz R., 1993, Sieci neuronowe. Akademicka Oficyna Wydawnicza, Warszawa, s. 130.
- 162. Tadeusiewicz R., Flasiński M., 1991, Rozpoznawanie obrazów. PWN, Warszawa, s. 217.
- 163. Tadeusiewicz R., Gąciarz T., Borowik B., Leper B., 2007, Odkrywanie właściwości sieci neuronowych przy użyciu programów w języku C#. PAU MKNT, Kraków, s. 428.
- 164. Taranik J.V., Settle M., 1981, Space Shuttle: A New Era in Terrestrial Remote Sensing. Science, Vol. 214, nr 4521, s. 619 – 626.
- 165. Thenkabail P.S., Enclona E.A., Ashton M.S., van der Meer B., 2004, Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sensing of Environment, Vol. 91, s. 354-376.
- 166. Tian Q., Tong Q., Pu R., Guo X., Zhao C., 2001, Spectroscopic determination of wheat water status using 1650-1850 nm spectral absorption features. International Journal of Remote Sensing, Vol. 22, s. 2329-2338.
- 167. Trianni G., 2007, Techniques for fusion of remotely sensed data over urban environments, Universit`A Degli Studi Di Pavia, Dottorato Di Ricerca in Ingegneria Elettronica Elettrica ed Informatica, XX Ciclo, Praca doktorska, promotor prof. dr Paolo Gamba, Pavia, s. 140.
- 168. Tsai F.; Lin E.-K., Yoshino K., 2007, Spectrally segmented principal component analysis of hyperspectral imagery for mapping invasive plant species. International Journal of Remote Sensing, Vol. 28, s. 1023-1039.
- 169. van der Meer F., Vasquez-Torres M., Van Dijk P.M., 1997, Spectral characterization of ophiolite lithologies in the Troodos Ophiolite Complex of Cyprus and its potential in prospecting for massive sulphide deposits. International Journal of Remote Sensing, Vol. 18, nr 6, s. 1245-1257.
- 170. van der Meer F.D., de Jong S.M. (red.), 2001, Imaging spectrometry: basic principles and prospective applications. Kluwer Academic, Dordrecht, s. 405.
- 171. Vane G., Goetz A.F.H., 1993, Terrestrial Imaging Spectroscopy: Current Status, Future Trends. Remote Sensing of Environment, Vol. 44, s. 117-126.
- 172. Vane G., Porter W.M., Reimer J.H., Chrien T.G., Green R.O., 1988, AVIRIS performance during the 1987 flight season: an AVIRIS project assessment and summary of the NASA – sponsored performance evaluation. Proceedings of the AVIRIS performance Evaluation Workshop. The Jet Propulsion Laboratory, JPL 83-88, s. 1-20.
- 173. Walthall C.L., 2008, Sources of imagery. W: Airborne Remote Sensing Basics. Simple tools for checking image data quality, USDA-ARS, Hydrology and Remote Sensing Lab, Beltsville, Maryland. http://hydrolab.arsusda.gov/rsbasics/index.php.
- 174. Werbos P., 1994, The roots of back propagation: from ordered derivatives to neural networks and political forecasting (adaptive and learning systems for signal processing, communications and control series). John Wiley and Sons, New York, s. 342.
- 175. Wężyk P., Wertz B., 2005, Forest map revision using the hyperspectral scanner AISA images. W: B. Zagajewski, M. Sobczak (red.), Imaging Spectroscopy. New Quality in Environmental Studies, EARSeL, Warsaw University, Warsaw, s. 687-699.
- 176. Wężyk P., Wertz B., Waloszek A., 2003, Skaner hiperspektralny AISA (Airborne Imaging Spectrometer for Applications) jako narzędzie pozyskiwania informacji o ekosystemie leśnym. Archiwum Fotogrametrii, Kartografii i Teledetekcji, Vol. 13 B., Fotogrametria bliskiego i dalekiego zasięgu, s. 477-496.
- 177. Wood S.D., Lawrence R.L., Sheley R.L., 2006, Mapping invasives plants using hyperspectral imagery, classification trees, and classification thresholds. Proceedings of ASPRS 2006 Annual Conference, Reno, Nevada, s. 1-9.
- 178. Wullschleger S.D., Wilson K.B., Hanson P.J., 2000, Environmental control of whole-plant transpiration, canopy conductance and estimates of the decoupling coefficient for large red maple trees. Agricultural and Forest Meteorology, Vol. 104, s. 157–168.
- 179. Zadeh L.A., 1965, Fuzzy sets. Information and Control, Vol. 8, s. 338-353.
- 180. Zadeh L.A., 1972, A fuzzy-set-theoretical interpretation of linguistic hedges. Journal of Cybernetics, Vol. 2, s. 4-34.
- 181. Zagajewski B., Jarocińska A., Olesiuk D., 2009, Metody i techniki badań geoinformatycznych, Wydział Geografii i Studiów Regionalnych UW. Warszawa, s. 118. Wydanie elektroniczne http://telegeo.wgsr.uw.edu.pl/bz/Zagajewski_Jarocinska_Olesiuk_cpo_2.pdf.
- 182. Zagajewski B., Kozlowska A., Krowczynska M., Sobczak M., Wrzesien M., 2005, Mapping high mountain vegetation using hyperspectral data. EARSeL eProceedings, Vol. 4, nr 1, s. 70-78.
- 183. Zagajewski B., Lechnio J., Sobczak M., 2007, Wykorzystanie teledetekcji hiperspektralnej w analizie roślinności zanieczyszczonej metalami ciężkimi. Teledetekcja Środowiska, Tom 37, Klub Teledetekcji Środowiska PTG, Warszawa, s. 82-100.
- 184. Zagajewski B., Sobczak M., 2003, Field remote sensing techniques for mountains vegetation investigation. Proceedings of the 3rd EARSeL Workshop on Imaging Spectroscopy, Oberpfaffenhofen, s. 580-596.
- 185. Zagajewski B., Sobczak M., Próchnicki W. (red.), 2005, 4th Workshop on Imaging Spectroscopy. New Quality in Environmental Studies. Abstract Book. EARSeL & Warsaw University, Warsaw, s. 164.
- 186. Zagajewski B., Sobczak M., Wrzesień M., 2004, Badania górskich zbiorowisk roślinnych z użyciem technik hiperspektralnych. Przegląd Geofizyczny, Tom XLIX, PWN, Warszawa, s. 115-129.
- 187. Zagajewski B., Sobczak M., Wrzesień M., Kozłowska A., Krówczyńska M., 2006, Kartowanie górskich zbiorowisk roślinnych z użyciem zobrazowań hiperspektralnych DAIS7915. W: Z. Mirek, B. Godzik (red.), Tatrzański Park Narodowy na tle innych górskich terenów chronionych. Tom II. Nauki biologiczne. TPN, PTPNoZ – Oddział Krakowski, Zakopane, s. 137-150.
- 188. Żurada J. Barski M., Jędruch W., 1996, Sztuczne sieci neuronowe. Podstawy teorii i zastosowania. PWN, Warszawa, s. 376.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b1a65216-58f4-4070-b58b-a84ffb1c8abf