Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | R. 88, nr 9b | 66-69
Tytuł artykułu

Data-based scheduling framework

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Szkielet terminarza działań oparty o bazę danych
Języki publikacji
EN
Abstrakty
EN
Based on the analysis of the differences and relations between traditional and data-based scheduling methods for complex manufacturing systems, we propose a data-based scheduling framework. Then we discuss how to implement it for a semiconductor manufacturing system. Finally, we introduce the state-of-the-art research on the key technologies of data-based scheduling and point out their development trends.
PL
Zaproponowano szkielet opracowania terminarza działań w oparciu o bazę danych. Metodę sprawdzono na przykładzie przemysłu półprzewodnikowego.
Wydawca

Rocznik
Strony
66-69
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
  • School of Electronics and Information Engineering, Tongji University, lili@tongji.edu.cn
autor
  • School of Electronics and Information Engineering, Tongji University
autor
  • School of Electronics and Information Engineering, Tongji University
Bibliografia
  • [1] Kusiak A. Feature Transformation Methods in Data Mining. IEEE Transactions on Electronics Packing Manufacturing, 24(2001), No.3, 214-221
  • [2] Chen Y M, Miao D Q, Wang R Z. A Rough Set Approach to Feature Selection Based on Ant Colony Optimization, Pattern Recognition Letters, 31(2010), No.3, 226-233
  • [3] Shiue Y R. Development of Two-Level Decision Tree-Based Real-Time Scheduling System under Product Mix Variety Environment, Robotics and Computer-Integrated Manufacturing, 25(2009), No.4-5,709-720
  • [4] Hu C H, Su S F. Hierarchical Clustering Methods for Semiconductor Manufacturing Data, Proceedings of the 2004 IEEE International Conference on Networking, Sensing Control, 2004, Taiwan, 1063-1068
  • [5] Chen T. Predicting Wafer-Lot Output Time with a Hybrid FCM–FBPN Approach, IEEE Transactions on Dystem, Man and cybernetics-Part B: Cybernetics, 37(2007), No.4, 784-793
  • [6] Mueller R, McGinnis L F. Automatic Generation of Simulation Models for Semiconductor Manufacturing, Proceedings of the 2007 Winter Simulation Conference, Washington, DC, United States, 2007, 648-657
  • [7] Ye K, Qiao F, Ma Y M. General Structure of the Semiconductor Production Scheduling Model, Applied Mechanics and Materials, 20-23(2010), 465-469
  • [8] Bagchi S, Baseman R J, Davenport A, Natarajan R, Slonim N, Weiss S. Data Analytics and Stochastic Modeling in a Semiconductor Fab, Applied Stochastic Models in Business and Industry, 26(2010), No.1, 1-27
  • [9] Chen T, Wang Y C. A Nonlinear Scheduling Rule Incorporating Fuzzy-Neural Remaining Cycle Time Estimator for Scheduling a Semiconductor Manufacturing Factory—a Simulation Study, International Journal of Advanced Manufacturing Technology, 45(2009), No.1-2, 110-121
  • [10] Arredondo F, Martinez E. Learning and Adaptation of a Policy for Dynamic Order Acceptance in Make-To-Order Manufacturing, Computers and Industrial Engineering, 58(2010), No.1, 70-83
  • [11] Shukla K S, Tiwari M K, Son Y J. Bidding-Based Multi-Agent System for Integrated Process Planning and Scheduling a Data-Mining and Hybrid Tabu-SA Algorithm-Oriented Approach, International Journal of Advanced Manufacturing Technology, 38(2008), No.1-2, 163-175
  • [12] Lee K K. Fuzzy Rule Generation for Adaptive Scheduling in a Dynamic Manufacturing, Applied Soft Computing, 8(2008), No.4, 1295-1304
  • [13] Yang H B, Yan H S. An Adaptive Approach to Dynamic Scheduling in Knowledgeable Manufacturing Cell, International Journal of Advanced Manufacturing Technology, 42(2009), No.3-4, 312-320
  • [14] Chaudhuri A, De K. Job Scheduling Problem Using Rough Fuzzy Multilayer Perception Neural Networks, Journal of Artificial Intelligence: Theory and Application, 1(2010), No.1, 4-19
  • [15] Kumar S, Rao C S P. Application of Ant Colony, Genetic Algorithm and Data Mining-Based Techniques for Scheduling, Robotics and Computer-Integrated Manufacturing, 25(2009), No.6, 901–908
  • [16] Olafsson S, Li X N. Learning Effective New Single Machine Dispatching Rules from Optimal Scheduling Data, International Journal of Production Economics, 128(2010), No.1, 118-126
  • [17] Choi H S, Kim J S, Lee D H. Real-time scheduling for reentrant hybrid flow shops: A decision tree based mechanism and its application to a TFT-LCD line, Expert Systems with Applications, 38(2011), No.4, 3514–3521
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b1a150f6-56ba-40c8-8326-80caccdb9a02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.