Czasopismo
2024
|
Vol. 72, nr 4
|
art. no. e150112
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
The occurrence of partial shading in solar power systems presents a substantial challenge with widespread implications, sparking extensive research, notably in the field of maximum power point tracking (MPPT). This study emphasizes the critical process of accurately tracking the maximum power points with the characteristic curves of photovoltaic (PV) modules under real-time, diverse partial shading patterns. It explores the various stages of the tracking process and the methodologies employed for optimization. While conventional methods show effectiveness, they often fall short in swiftly and accurately tracking maximum power points with minimal errors. To address this limitation, this research introduces a novel machine learning approach known as adaptive reinforcement learning with neural network architecture (ARL-NNA) for MPPT. The results obtained from ARL-NNA are compared with existing algorithms using the same experimental data. Furthermore, the outcomes are validated through different factors and processing time measurements. The findings conclusively demonstrate the efficacy and superiority of the proposed algorithm in effectively tracking maximum power points in PV characteristic curves, providing a promising solution for optimizing solar energy generation in partial shading patterns. This study significantly impacts various realms of electrical engineering including power engineering, power electronics, industrial electronics, solid-state electronics, energy technology, and other related field of engineering and technology.
Rocznik
Tom
Strony
art. no. e150112
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Thiagarajar College of Engineering, Madurai, Tamil Nadu, India, leelavathi@student.tce.edu
autor
- Thiagarajar College of Engineering, Madurai, Tamil Nadu, India
Bibliografia
- [1] “Solar PV.” IEA. 2023. [Online]. Available: https://www.iea.org/energy-system/renewables/solar-pv/ (Accessed 2023-07-13).
- [2] “Solar power by country.Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Solar_power_by_country (Accessed: 2023-02-15).
- [3] “List of countries received snowfall.” Academickids. [Online]. Available: https://academickids.com/encyclopedia/index.php/List_of_countries_receiving_snowfall/ (Accessed 2023-02-15).
- [4] “Average precipitation by country.” Trading Economics. [Online]. Available: https://tradingeconomics.com/country-list/precipitation/ (Accessed 2023-02-15).
- [5] “List of cities by sunshine duration.”Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/List_of_cities_by_sunshine_duration/ (Accessed 2023-02-15).
- [6] S. Kinuthia, “The cloudiest city in the world.” Wordatlas. 2019. [Online]. Available: https://www.worldatlas.com/articles/citieswho-receive-the-least-sunshine.html/ (Accessed 2023-05-12).
- [7] P. Srivastava, “In Pictures: The wettest places on earth!” The Times of India. 2022. [Online]. Available: https://timesofindia.indiatimes.com/travel/destinations/in-pictures-the-wettest-places-onearth/photostory/92878425.cms?picid=92878621/ (Accessed 2023-01-05).
- [8] J. Nobel, “The World’s Snowiest Place is Starting to Melt.” National Geographic. 2017. [Online]. Available: https://www.nationalgeographic.com/science/article/worlds-snowiest-placenorthwestern-japan-melting-climate-change?loggedin=true&rnd=1692861915026/ (Accessed 2023-03-13).
- [9] Z. Bielecki, K. Achtenberg, M. Kopytko, J. Mikołajczyk, J. Wojtas, and A. Rogalski, “Review of photodetectors characterization methods,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 2, p. e140534, 2022, doi: 10.24425/bpasts.2022.140534.
- [10] M. Uoya and H. Koizumi, “A calculation method of photovoltaic array’s operating point for MPPT evaluation based on one-dimensional Newton-Raphson method,” IEEE Trans. Ind. Appl, vol. 51, no. 1, pp. 567–575, 2015, doi: 10.1109/TIA.2014.2326083.
- [11] A. Chatterjee, A. Keyhani, and D. Kapoor, “Identification of photovoltaic source models,” IEEE Trans. Energy Convers., vol. 24, no. 3, pp. 883–889, 2011, doi: 10.1109/TEC.2011.2159268.
- [12] W. Marańda and M. Piotrowicz, “Efficiency of maximum power point tracking in photovoltaic system under variable solar irradiance,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 4, no. 4, pp. 713–721, 2014, doi: 10.2478/bpasts-2014-0077.
- [13] T. Sutikno, A.C. Subrata, G. Pau, A. Jusoh and K. IshaQue, “Maximum power point tracking techniques for low-cost solar photovoltaic applications – Part I: constant parameters and trialand-error,” Arch. Electr. Eng., vol. 72, no. 1, pp. 125–145, 2023, doi: 10.24425/aee.2023.145410.
- [14] K.Y.Yap, C.R. Sarimuthu and J.M.Y. Lim, “Artificial Intelligence Based MPPT Techniques for Solar Power System: A review,” J. Mod. Power Syst. Clean Energy, vol. 8, no. 6, pp. 1043–1059, 2020, doi: 10.35833/MPCE.2020.000159.
- [15] J. Ahmed and Z. Salam, “An enhanced adaptive P&O MPPT for fast and efficient tracking under varying environmental conditions,” IEEE Trans Sustain. Energy, vol. 9, no. 3, pp. 1487–1496, 2018, doi: 10.1109/TSTE.2018.2791968.
- [16] A. Ilyas, M. Ayyub, M.R. Khan, A. Jain and M.A. Husain, “Realisation of incremental conductance the MPPT algorithm for a photovoltaic system,” Int. J. Ambient Energy, vol. 39, no. 8, pp. 873–884, 2018, doi: 10.1080/01430750.2017.1354322.
- [17] A.M. Eltamaly, M.S. Al-Saud, A.G.Abokhalil, and H.M.H. Farh, “Simulation and experimental validation of fast adaptive particle swarm optimization strategy for photovoltaic global peak tracker under dynamic partial shading,” Renew. Sust. Energy Rev., vol. 124, pp. 1–14, 2020, doi: 10.1016/j.rser.2020.109719.
- [18] D. Yousri, T.S. Babu, D. Allam, V.K. Ramachandaramurthy, and M.B. Etiba, “A novel chaotic power pollination algorithm for global maximum power point tracking for photovoltaic system under partial shading conditions,” IEEE Access, vol. 7, pp. 121432–121445, 2019, doi: 10.1109/ACCESS.2019.2937600.
- [19] L. Shang, W. Zhu, P. Li, and H. Guo, “Maximum power point tracking of PV system under partial shading conditions through flower pollination algorithm,” Prot. Control Mod. Power Syst., vol. 3, no. 4, pp. 1–7, 2018, doi: 10.1186/s41601-018-0111-3.
- [20] H.Wang et al., “Artificial bee colony algorithm based on knowledge fusion,” Complex Intell. Syst., vol. 7, pp. 1139–1152, 2021, doi: 10.1007/s40747-020-00171-2.
- [21] L. Knypiński, “A novel hybrid cuckoo search algorithm for optimization of a line-start PM synchronous motor,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 1, p. e144586, 2023, doi: 10.24425/bpasts.2023.144586.
- [22] G.K.J. Samuel, M.S.S. Sundari, R. Bhavani, and A.J. Gnanamalar, “An efficient microgrid model based on Markov fuzzy demand-side management,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 3, p. e145569, 2023, doi: 10.24425/bpasts.2023.145569.
- [23] T. Sun and C. Liu, “Fuzzy comprehensive model of manufacturing industry transfer risk based on economic big data analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 2, p. e139959, 2022, doi: 10.24425/bpasts.2021.139959.
- [24] X. Tang, H. Li, J. Zhang, Z. Tang, H. Wang and C. Cal, “Anonymous traffic classification based on three-dimensional Markov image and deep learning,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e145676, 2023, doi: 10.24425/bpasts.2023.145676.
- [25] M. Leelavathi and V.S. Kumar, “Deep neural network algorithm for MPPT control of double diode equation based PHV module,” Mater. Today-Proc., vol. 62, no. 7, pp. 4764–4771, 2022, doi: 10.1016/j.matpr.2022.03.340.
- [26] R.S. Sutton and A.G. Barto, Reinforcement learning: An introduction. England: MIT, 2018.
- [27] X. Zhang et al., “Optimal mileage-based PHV array reconfiguration using swarm reinforcement learning,” Energy Convers. Manage., vol. 232, p. 113892, 2021, doi: 10.1016/j.enconman.2021.113892.
- [28] L. Avila, M. De Paula, T. Maximiliano, and I. Carlucho, “Deep reinforcement learning approach for MPPT control of partially shaded PHV systems in Smart Grids,” Appl. Soft Comput., vol. 97, Part B, p. 106711, 2020, doi: 10.1016/j.asoc.2020.106711.
- [29] R.C. Hsu, C.T. Liu, W.Y. Chen, H.I. Hsieh, and H.L. Wang, “A Reinforcement Learning-Based Maximum Power Point Tracking Method for Photovoltaic Array,” Int. J. Photoenergy, vol. 2015, p. 496401, 2015, doi: 10.1155/2015/496401.
- [30] J. Sirignano and K. Spiliopoulos, “Asymptotics of reinforcement learning with neural networks,” Stochastic Systems, vol. 12, no. 1, pp. 2–29, 2021, doi: 10.48550/arXiv.1911.07304.
- [31] A.K. Abdulrazzaq, G. Bognár, and B Plesz, “Evaluation of different methods for solar cells/modules parameters extraction,” Solar Energy, vol. 196, pp. 183–195, 2020, doi: 10.1016/j.solener.2019.12.010.
- [32] X.H. Nguyen and M.P. Nguyen, “Mathematical modeling of photovoltaic cell/module/arrays with tags in Matlab/Simulink,” Environ. Syst. Res., vol. 4, no. 24, pp. 1–13, 2015, doi: 10.1186/s40068-015-0047-9.
- [33] T.H. Le, L. Dai, H. Jang, and S. Shin, “Robust Process Parameter Design Methodology: A New Estimation Approach by Using Feed-Forward Neural Network Structures and Machine Learning Algorithms,” Appl. Sci., vol. 12, no. 6, p. 2904, 2022, doi: 10.3390/app12062904.
- [34] E.A. Silva, F. Bradaschia and M.C. Cavalcanti, and A.J. Nascimento, “Parameter estimation method to improve the accuracy of photovoltaic electrical model,” IEEE J. Photovolt., vol, 6, no. 1, pp. 278–285, 2016, doi: 10.1109/JPHOTOV.2015.2483369.
- [35] M. Leelavathi, V.S. Kumar and B. Devi, “Maximizing Solar Energy Output: A Comparative Analysis of MPPT Strategies for Partially Shaded PV Systems,” in 2023 International Conference on Energy, Materials and Communication Engineering (ICEMCE). India, 2023, pp. 1–7, doi: 10.1109/ICEMCE57940.2023.10434173.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b181c30b-d635-4f01-b27c-8f40500dc56e