Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 70, No. 2 | 271--276
Tytuł artykułu

Detection of human finger joints in ultrasound images : structure and optimization

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Synovitis is the inflammation of a synovial membrane surrounding a joint. Its assessment is an important step in the diagnosis and treatment of rheumatoid arthritis. Joint detection is the first stage of an automated method of assessment of a degree of synovitis, from an Ultrasound (USG) image of a finger joint and its surrounding area. A joint detector consists of three parts: image preprocessing, feature extraction, and classification. Each part contains adjustable parameters that must be set experimentally to ensure the proper operation of the detector. Both the structure of a joint detector and a procedure for finding a near-optimal configuration of the adjustable parameters are described. The optimization process is based on two evaluation measures: Area Under the Receiver Operating Characteristic Curve (AUC) and False Positive Count (FPC). The optimization process decreases the number of pictures with multiple detections, which was the main point of works presented in this paper. This was achieved by increasing the number of components of the homogeneous mixed-SURF descriptor which has the greatest influence on the final result. Non-SURF descriptors achieve poorer classification results. Our research led to the creation of a better joint detector which could positively influence the final results of inflammation level classification.
Słowa kluczowe
Wydawca

Rocznik
Strony
271--276
Opis fizyczny
Bibliogr. 11 poz., rys., tab., wykr.
Twórcy
autor
autor
  • Polish-Japanese Academy of Information Technology, Warsaw, Poland , js@pjwstk.edu.pl
  • Department for Neurology, Rheumatology and Physical Medicine, Helse Førde, Førde, Norway , mielnik.p@gmail.com
  • Polish-Japanese Academy of Information Technology, Warsaw, Poland, kulbacki@pjwstk.edu.pl
  • DIVE IN AI, Wroclaw, Poland
Bibliografia
  • [1] M. ØStergaard and M. Szkudlarek, “Ultrasonography: A valid method for assessing rheumatoid arthritis?” Arthritis & Rheumatism, vol. 52, no. 3, pp. 681-686, 2005. [Online]. Available: https://doi.org/10.1002/art.20940.
  • [2] K. Wereszczyński, J. Segen, M. Kulbacki, P. Mielnik, M. Fojcik, and K. Wojciechowski, “Identifying a joint in medical ultrasound images using trained classifiers,” in Computer Vision and Graphics. Cham: Springer International Publishing, 2014, pp. 626-635. [Online]. Available: https://doi.org/10.1007/978-3-319-11331-9_75.
  • [3] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in Computer Vision - ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 404-417. [Online]. Available: https://doi.org/10.1007/11744023_32.
  • [4] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” in Computer Vision - ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 430-443. [Online]. Available: https://doi.org/10.1007/11744023_34.
  • [5] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust invariant scalable key points,” in 2011 International Conference on Computer Vision, 2011, pp. 2548-2555. [Online]. Available: https://doi.org/10.1109/ICCV.2011.6126542.
  • [6] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative to sift or surf,” in 2011 International Conference on Computer Vision, 2011, pp. 2564-2571. [Online]. Available: https://doi.org/10.1109/ICCV.2011.6126544.
  • [7] C.-C. CHANG, “Libsvm : a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1-27:27, 2011. [Online]. Available: https://cir.nii.ac.jp/crid/1574231874006333696.
  • [8] L. Breiman, Classification and regression trees. Routledge, 2017. [Online]. Available: https://doi.org/10.1201/9781315139470.
  • [9] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic algorithm configuration.” VISAPP (1), vol. 2, no. 331-340, p. 2, 2009.
  • [10] “Automated assessment of joint synovitis activity from medical ultrasound and power doppler examinations using image processing and machine learning methods.” [Online]. Available: http://eeagrants.org/project-portal/project/PL12-0015.
  • [11] D. J. Hand and R. J. Till, “A simple generalisation of the area under the roc curve for multiple class classification problems,” Machine Learning, vol. 45, no. 2, pp. 171-186, Nov 2001. [Online]. Available: https://doi.org/10.1023/A:1010920819831.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b17a5347-f501-41e4-9e94-9d1ac31fc807
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.