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Abstract: The work focuses on the dynamic stability problem of a simply supported three-layer beam subjected to a pulsating axial force. 
Two analytical models of this beam are developed: one model takes into account the non-linear hypothesis of cross-section deformation, 
and the other takes into account the standard "broken line" hypothesis. Displacements, strains and stresses for each model are formulated 
in detail. Based on the Hamilton principle, equations of motion are determined for each of these models. These systems of two differential 
equations for each model are approximately solved with the consideration of the axial pulsating force, and the fundamental natural  
frequencies, critical forces and the Mathieu equation are determined. Detailed studies are performed for an exemplary family of beams. 
The stable and unstable regions are calculated for the three pulsating load cases. The values of fundamental natural frequencies  
and critical forces of exemplary beams calculated from two models are compared.  
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1. INTRODUCTION 

Sandwich constructions initiated in the mid-twentieth century 
have been intensively improved and are being used in aerospace, 
automotive, railway and shipbuilding industries. There are many 
scientific and research works on stability and free vibrations of 
sandwich beams. Ray and Kar [1] presented the parametric 
instability of a three-layer symmetrical sandwich beam subjected 
to periodic axial loading. Nine different boundary conditions were 
considered. The influence of the shear parameter on static 
buckling loads was considered, and the influence of the shear 
parameter and the core thickness parameter on the areas of 
parametric instability was investigated. Yeh et al. [2] studied the 
problem of dynamic stability of a sandwich beam with an 
electrorheological liquid core subjected to an axial dynamic force. 
The influence of natural frequency, static buckling loads and loss 
factors on the dynamic stability of a sandwich beam was 
investigated. In addition, the areas of instability of the studied 
beam were calculated using the harmonic balance method and 
the finite element method. Yang et al. [3] used the finite element 
method to study the vibration and dynamic stability of a moving 
sandwich beam. It was assumed that the damping layer is linearly 
viscoelastic and almost incompressible. Taking into account the 
numerical results, it was shown that the forced damping layer 
stabilises the movable layered beam. Lin and Chen [4] used the 
finite element method to study the problems of dynamic stability of 
spinning pre-twisted sandwich beams with a limited damping 
layer, subjected to periodic axial loads. For a viscoelastic material, 
a complex representation of the modulus was used. The influence 
of the pre-twisted angles, spinning speed, core thickness, shear 
parameter, core loss factor and constraint layer stiffness on 
unstable regions was discussed. Many different plate theories 

were described by Carrera and Brischetto [5]. Bending and 
vibration of sandwich structures were assessed. The kinematics of 
the classical and other theories (higher order, zigzag, layered and 
mixed) were described. Reddy [6] reformulated the classical and 
shear theories of beam and plate deformations using non-local 
differential Eringen constitutive relations and non-linear von 
Karman strains. Theoretical studies described in the article can be 
used to determine the influence of geometric non-linearity and 
non-local constitutive relations on the bending response. Misiurek 
[7] studied the dynamic response of a finite, simply supported 
sandwich beam subjected to a force moving at a constant speed. 
The main goal of the work was to show that the aperiodic part of 
the solution can be presented in a closed form, instead of an 
infinite form (an infinite series). Based on the Tymoshenko beam 
theory, Chen et al. [8] studied the behaviour of non-linear natural 
vibrations of a porous sandwich beam deformable under the 
influence of shear. The beam consisted of two facing layers and a 
functionally graded porous core, which contains internal pores 
with different porosity distributions. The authors assumed that the 
elastic modulus and mass density change along the thickness 
direction in terms of porosity coefficients and mass density. 
Grygorowicz and Magnucka-Blandzi [9] described the static and 
dynamic stability of a simply supported sandwich beam with a 
metal foam core. Mathematical modelling of the problem was 
presented. The displacement field was formulated based on the 
broken line hypothesis and the assumed non-linear hypothesis. 
Using the Hamilton principle, the equations of motion were 
obtained. Critical loads, areas of instability, natural frequencies of 
the beam and static and dynamic equilibrium paths were 
calculated analytically and verified numerically. Kolakowski and 
Teter [10] reviewed papers on static and dynamic buckling and 
post-buckling behaviours of thin-walled structures. Based on the 
analytical-numerical method, the static buckling stresses, natural 
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frequencies, equation coefficients describing the post-buckling 
equilibrium path and the dynamic response of the plate structure 
subjected to a compressive load and/or bending moment were 
determined. In addition, all buckling modes and post-buckling 
behaviour of thin-walled columns made of different materials were 
described. Sayyad and Ghugal [11] developed a unified shear 
deformation theory for the analysis of shear-deformable compo-
site beams and plates. To account for the transverse shear de-
formation effect, the authors expanded the theory with different 
shape functions (parabolic (PSDT), trigonometric (TSDT), hyper-
bolic (HSDT) and exponential (ESDT)) in terms of thickness coor-
dinates. To verify the accuracy and effectiveness of the authors' 
theory, the obtained results were compared with the exact elastici-
ty solution and other higher order shear deformation theories. 
Sayyad and Ghugal [12] provided a critical literature review on 
bending, buckling and free vibration analysis of isotropic, laminat-
ed and shear-deformable beams based on equivalent theories 
(single-layer theories, layer-wise theories, zig-zag theories and 
exact elastic solution). In addition, the literature on finite element 
modelling of laminated and sandwich beams was reviewed based 
on classical and refined theories. Finally, for reference to re-
searchers of the subject, the displacement fields of various equiv-
alent single-layer and layer-wise theories were summarised. 
Based on the Grigolyuk-Chulkov hypothesis and the modified 
couple stress theory, Avrejcewicz et al. [13] developed a mathe-
matical model of three-layer beams. The authors took into account 
the movements of the layers at the micro- and the nano-scale. 
Based on the Hamilton principle, the equations of motion and the 
boundary/initial conditions for the displacement of the beams were 
obtained. Smyczyński and Magnucka-Blandzi [14] considered the 
stability analysis of a simply supported five-layer beam. The beam 
consisted of two facings, a core and two tie layers between the 
facings and the core. Based on the Hamilton principle and the 
formulated non-linear hypothesis of beam cross-section defor-
mation, a system of four stability equations was derived. Then, the 
system was approximately solved, and critical loads, free vibra-
tions and areas of instability were determined. Sayyad and Ghu-
gal [15] used the theory of trigonometric shear and normal strain 
to study the bending, buckling and vibration responses of shear-
deformable composite laminated beams and sandwich beams. 
The main goal of this theory was to take into account the effects of 
transverse shear and normal strain. According to this theory, the 
shear stresses on the top and bottom surfaces were equal to zero 
(zero shear stress conditions were met without applying a shear 
correction factor). Numerical results for deflections, stresses, 
natural frequencies and critical buckling loads for isotropic, lami-
nated and sandwich beams were presented. Magnucka-Blandzi 
and Magnucki [16] presented a mathematical model of a simply 
supported sandwich beam subjected to three-point bending. To 
describe the problem, the authors adopted the appropriate hy-
pothesis of flat cross-section deformation. An important feature of 
this analytical beam model was that it included the shear effect of 
the facings and was reduced to a classic sandwich beam de-
scribed by two differential equilibrium equations. Al-shujairi and 
Mollamahmutoglu [17] studied the dynamic stability of a function-
ally graded (FG) size-dependent layered microbeam subjected to 
parametric axial excitation. The authors considered various 
boundary conditions, including thermal effects. The material prop-
erties of the FG part of the multilayer microbeam varied depend-
ing on the thickness of the beam. The problem was solved numer-
ically. The original contribution to the article was to determine the 
parametric instability regions of the FG microbeam under different 

boundary conditions and with different effects. In a review, Birman 
and Kardomateas [18] described contemporary trends in theoreti-
cal developments, innovative designs and modern applications of 
layered structures. Examples of problems faced by engineers and 
designers of sandwich structures were considered, including 
typical failures, responses to various loads, environmental effects 
and fire. Example applications of sandwich structures were con-
centrated in the aerospace, civil and marine engineering, electron-
ics and biomedicine industries. Li et al. [19] discussed the non-
linear amplitude–frequency response and the unstable boundary 
and the dynamic responses of an axially moving viscoelastic layer 
beam at low- and high-frequency fundamental resonances and 
compared them. Sayyad and Ghugal [20] presented a literature 
review on the modelling and analysis of functionally graded sand-
wich beams using the theory of elasticity, analytical methods and 
numerical methods based on classical and refined theories of 
shear deformation, citing 250 references. In addition, suggestions 
for future research into the analysis of functionally graded sand-
wich beams were made. Sayyad and Ghugal [21] presented an 
analysis of the static behaviour of curved FG sandwich beams. 
For the bending analysis of vertically curved beams, the sinusoi-
dal beam theory was used, taking into account the influence of 
transverse normal stresses/strains. Sayyad and Avhad [22] pre-
sented closed form Navier-type solutions for static bending, elastic 
buckling and free vibration analysis of functionally graded (FG) 
symmetrical layered beams using the theory of deformation under 
hyperbolic shear. Eloy et al. [23] investigated numerically and 
experimentally sandwich panels with carbon–epoxy composite 
coatings and a magnetorheological elastomer honeycomb core. 
Based on the results, it was noticed that the honeycomb sandwich 
panel shifted the natural frequencies due to the increase of the 
induced magnetic field, especially for the shape of the first mode. 
Chen et al. [24] extended the model of a higher order shear-
deformable mixed beam element with a rational distribution of 
shear stresses to the vibration analysis of functionally graded 
beams. The authors discussed the load–frequency relationship of 
functionally graded sandwich beams. The results showed that in 
addition to the axial force, the bending moment exerted a signifi-
cant difference in the vibration frequency of the functionally grad-
ed beams. Tewelde and Krawczuk [25] presented a review of the 
literature on non-linear effects caused by the closure of cracks in 
the structure, i.e. beam and plate structures. After analysing vari-
ous methods, the advantages, disadvantages and perspectives of 
a number of non-linear vibration methods for detecting structural 
damage were discussed. In addition, recommendations were 
made for future researchers. 

 
Fig. 1. Scheme of the beam subjected to a pulsating axial force 

The subject of the study is a simply supported three-layer 

beam of length L, width b and total depth h subjected to a pulsat-
ing axial force F (Fig. 1). A novelty in this work is the individual 
hypothesis-theory of deformation of the plane cross section, which 
is assumed for beam modelling taking into account the shear 
effect in layers. The main purpose of the work is to analytically 
determine the fundamental natural frequencies, critical loads and 
unstable regions of this beam. This work is a continua-
tion/development of the study presented in the proceedings of the 
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8th International Conference on Coupled Instabilities in Metal 
Structures [26]. 

2. MATHEMATICAL MODEL OF THE BEAM 

A non-linear hypothesis of a planar cross-section deformation 
is assumed. This hypothesis takes into account the shear effect in 
each layer of this beam and is a generalisation of the standard 
"broken line" hypothesis. The deformation shape of the planar 
cross section is a curved line perpendicular to the outer surfaces 
of the beam (Fig. 2). Thus, this hypothesis satisfies the necessary 
condition of zeroing the shear stresses on these surfaces.  

 
Fig. 2. Scheme of the deformation of a planar cross section  

 of the three-layer beam – the non-linear hypothesis 

The total height of the beam equals 

ℎ = 2ℎ𝑓 + ℎ𝑐 , 

where hf, hc denote thicknesses of the outer layers and the mid-
dle layer (core), respectively. 

Moreover, the following notation is introduced: 

𝜂 = 𝑦 ℎ𝑐⁄  – dimensionless coordinate, 

𝑢̃1(𝑥, 𝑡) = 𝑢1(𝑥, 𝑡) ℎ𝑐⁄  – dimensionless displacement, 
𝜒𝑓 = ℎ𝑓 ℎ𝑐⁄   – parameter, 

𝑘𝑓 ∈ ⟨0,1⟩ – coefficient (real number), 

𝛽𝑐 ∈ ⟨0,1⟩  – coefficient (real number), 

𝐸𝑓 , 𝐸𝑐  – Young modulus of facings and core, 

𝜈𝑓 , 𝜈𝑐  – Poisson ratio of facings and core, 

𝜌𝑓 , 𝜌𝑐 – mass densities of facings and core. 

So, the total mass density of the beam is as follows: 

𝜌𝑏 = 𝜌𝑐 + 2𝜌𝑓𝜒𝑓 . 

Based on the assumed theory, longitudinal displacements are 
formulated separately for each layer, i.e. for 

upper layer: − (1 + 2𝜒𝑓) 2⁄ ≤ 𝜂 ≤ − 1 2⁄   

𝑢(𝑢)(𝑥. 𝑦, 𝑡) = −ℎ𝑐 [𝜂
𝜕𝑣

𝜕𝑥
+ 𝑓𝑑

(𝑢)(𝜂)𝑢̃1(𝑥, 𝑡)],  (1) 

 

where 

𝑓𝑑
(𝑢)(𝜂) = {− [3 − 4 (

𝜂

1+2𝜒𝑓
)

2

]
𝜂

1+2𝜒𝑓
}

𝑘𝑓

,  

middle layer (core): − 1 2⁄ ≤ η ≤ 1 2⁄   

𝑢(𝑐)(𝑥, 𝑦, 𝑡) = −ℎ𝑐 [𝜂
𝜕𝑣

𝜕𝑥
− 2𝑓𝑑

(𝑐)(𝜂)𝑢̃1(𝑥, 𝑡)],  (2) 

where 

𝑓𝑑
(𝑐)(𝜂) = 𝑐𝑓

3−4𝛽𝑐𝜂2

3−𝛽𝑐
𝜂,     𝑐𝑓 = [

1+6(1+𝜒𝑓)𝜒𝑓

(1+2𝜒𝑓)
3 ]

𝑘𝑓

,  

lower layer: 1 2⁄ ≤ 𝜂 ≤ (1 + 2𝜒𝑓) 2⁄   

𝑢(𝑙)(𝑥. 𝑦, 𝑡) = −ℎ𝑐 [𝜂
𝜕𝑣

𝜕𝑥
− 𝑓𝑑

(𝑙)(𝜂)𝑢̃1(𝑥, 𝑡)],  (3) 

where 

𝑓𝑑
(𝑙)(𝜂) = {[3 − 4 (

𝜂

1+2𝜒𝑓
)

2

]
𝜂

1+2𝜒𝑓
}

𝑘𝑓

.  

The non-linear deformation functions fd
(u)(η), fd

(c)(η) and 

fd
(l)(η) existing in these expressions are developed taking into 

account the conditions of continuity between layers and conditions 
of perpendicularity to the outer surfaces of the beam.  

A linear relationship between strains and displacements is as-
sumed, so the strains for each layer are as follows: 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
,       𝛾𝑥𝑦 =

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

ℎ𝑐𝜕𝜂
.  

Then, taking into account the aforementioned expressions and 
expressions (1)–(3), the strains are determined. 

Hence, the stresses are determined by using the following 
formulas: 

upper layer: − (1 + 2𝜒𝑓) 2⁄ ≤ 𝜂 ≤ − 1 2⁄    

𝜎𝑥
(𝑢)

= 𝐸𝑓 ⋅ 𝜀𝑥
(𝑢)

,       𝜏𝑥𝑦
(𝑢)

=
𝐸𝑓

2(1+𝜈𝑓)
⋅ 𝛾𝑥𝑦

(𝑢)
,  

middle layer (core): − 1 2⁄ ≤ η ≤ 1 2⁄   

𝜎𝑥
(𝑐)

= 𝐸𝑐 ⋅ 𝜀𝑥
(𝑐)

,       𝜏𝑥𝑦
(𝑐)

=
𝐸𝑐

2(1+𝜈𝑐)
⋅ 𝛾𝑥𝑦

(𝑐)
,  

lower layer: 1 2⁄ ≤ η ≤ (1 + 2χf) 2⁄   

𝜎𝑥
(𝑙)

= 𝐸𝑓 ⋅ 𝜀𝑥
(𝑙)

,       𝜏𝑥𝑦
(𝑙)

=
𝐸𝑓

2(1+𝜈𝑓)
⋅ 𝛾𝑥𝑦

(𝑙)
.  

Then, the elastic strain energy 

𝑈𝜀 =
1

2
𝑏ℎ𝑐 ⋅  

⋅ ∫ {𝐸𝑓  ∫ {[𝜀𝑥
(𝑢)

]
2

+
1

2(1+𝜈𝑓)
[𝛾𝑥𝑦

(𝑢)
]

2
} 𝑑𝜂 

−
1

2

− 
1+2𝜒𝑓

2

+
𝐿

0
   

+𝐸𝑐  ∫ {[𝜀𝑥
(𝑐)

]
2

+
1

2(1+𝜈𝑐)
[𝛾𝑥𝑦

(𝑐)
]

2
} 𝑑𝜂

1

2

−
1

2

+  

+𝐸𝑓  ∫ {[𝜀𝑥
(𝑙)

]
2

+
1

2(1+𝜈𝑓)
[𝛾𝑥𝑦

(𝑙)
]

2
} 𝑑𝜂

1+2𝜒𝑓

2
1

2

} 𝑑𝑥,  

the kinetic energy 

𝑇 =
1

2
(2𝜌𝑓𝜒𝑓 + 𝜌𝑐)𝑏ℎ𝑐 ∫ (

𝜕𝑣

𝜕𝑡
)

2

𝑑𝑥
𝐿

0
,  
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the work of the load 

𝑊 =
1

2
𝐹 ∫ (

𝜕𝑣

𝜕𝑥
)

2

𝑑𝑥
𝐿

0
  

are derived. 
Based on the Hamilton principle, 

𝛿 ∫ [𝑇 − (𝑈𝜀 − 𝑊)] 𝑑𝑡
𝑡2

𝑡1
= 0,  (4) 

two differential equations of motion are obtained in the following 
form: 

{
𝜌𝑏𝑏ℎ𝑐

𝜕2𝑣

𝜕𝑡2 + 𝐸𝑐𝑏ℎ𝑐
3 (𝐶𝑣𝑣

𝜕4𝑣

𝜕𝑥4 − 𝐶𝑣𝑢
𝜕3𝑢1

𝜕𝑥3 ) +
𝜕2𝑣

𝜕𝑥2 𝐹(𝑡) = 0

𝐶𝑣𝑢
𝜕3𝑣

𝜕𝑥3 − 𝐶𝑢𝑢
𝜕2𝑢1

𝜕𝑥2 + 𝐶𝑢
𝑢1(𝑥,𝑡)

ℎ𝑐
2 = 0

  (5) 

where Cvv, Cvu, Cuu and Cu are– dimensionless coefficients. 
These coefficients are as follows: 

𝐶𝑣𝑣 =
1

12
[1 + 2𝑒𝑓(3 + 6𝜒𝑓 + 4𝜒𝑓

2)𝜒𝑓],  

𝐶𝑣𝑢 =
1

10
[𝑐𝑓

5−𝛽𝑐

3−𝛽𝑐
+ 20𝑒𝑓𝐼1],  

𝐶𝑢𝑢 = 2𝑒𝑓𝐼2 +
𝑐𝑓

2

35
(105 − 42𝛽𝑐 + 5𝛽𝑐

2),  

𝐶𝑢 =
𝑒𝑓

1+𝜈𝑓
𝐼3 +

6

5(1+𝜈𝑐)
𝑐𝑓

2 15−10𝛽𝑐+3𝛽𝑐
2

(3−𝛽𝑐)2 ,  

where 

𝑒𝑓 =
𝐸𝑓

𝐸𝐶
,     𝐼1 = ∫ 𝜂𝑓𝑑

(𝑙)(𝜂)𝑑𝜂
1

2
+𝜒𝑓

1

2

,   

 𝐼2 = ∫ [𝑓𝑑
(𝑙)(𝜂)]

2
𝑑𝜂

1

2
+𝜒𝑓

1

2

, 

𝐼3 = ∫ [
𝑑𝑓𝑑

(𝑙)

𝑑𝜂
]

2

𝑑𝜂
1

2
+𝜒𝑓

1

2

.  

3. NATURAL FREQUENCY AND UNSTABLE REGIONS 

The system of two differential equations (5) is approximately 
solved with the use of two assumed functions:  

𝑣(𝑥, 𝑡) = 𝑣𝑎(𝑡) 𝑠𝑖𝑛 (𝜋
𝑥

𝐿
) , 𝑢̃1(𝑥, 𝑡) = 𝑢̃1𝑎(𝑡) 𝑐𝑜𝑠 (𝜋

𝑥

𝐿
),  (6) 

where va(t) and ũ1a(t) are time-dependent functions.  
These functions identically satisfy the boundary conditions: 

𝑣(0, 𝑡) = 𝑣(𝐿, 𝑡) = 0,     
𝑑𝑢1

𝑑𝑥
|𝑥=0 =  

𝑑𝑢1

𝑑𝑥
|𝑥=𝐿 = 0. 

The loading force – the pulsating force – is in the following 
form: 

𝐹(𝑡) = 𝐹𝑚 + 𝐹𝑎 𝑐𝑜𝑠(𝜃𝑡),  (7) 

where Fm, Fa and θ are mean value, amplitude and frequency of 
the force, respectively. Substituting functions (6) and (7) into 
equation (5), and after a simply transformation, the Mathieu equa-
tion is obtained: 

𝑑2𝑣𝑎

𝑑𝑡2 + 𝛺2[1 − 2𝜇 𝑐𝑜𝑠(𝜃𝑡)]𝑣𝑎(𝑡) = 0,  (8) 

 

where 

𝑣𝑎(𝑡) = 𝑣̅𝑎 𝑠𝑖𝑛(𝜔𝑡), va– deflection amplitude,              

𝛺2 = 𝜔2(1 − 𝛼𝑚), 𝜇 =
1

2
⋅

𝛼𝑎

1 − 𝛼𝑚

, 

𝛼𝑚 =
𝐹𝑚

𝐹𝐶𝑅
, 𝛼𝑎 =

𝐹𝑎

𝐹𝐶𝑅
, 

𝜔2 = (
𝜋

𝜆
)

4 1012

(1+2𝜒𝑓)
2 (1 − 𝐶𝑠𝑣)𝐶𝑣𝑣

𝐸𝑐

𝜌𝑏ℎ2,  

𝐹𝐶𝑅 = (
𝜋

𝜆
)

2
(1 − 𝐶𝑠𝑣)

𝐶𝑣𝑣

(1+2𝜒𝑓)
3 𝐸𝑐𝑏ℎ,  

𝐶𝑠𝑣 = 𝑚𝑎𝑥𝛽𝑐, 𝑘𝑓
{

𝜋2

𝐶𝑣𝑣
⋅

𝐶𝑣𝑢
2

𝜋2𝐶𝑢𝑢+𝜆𝑐
2𝐶𝑢

}, 𝜆𝑐 =
𝐿

ℎ𝑐
.  

Using the aforementioned notations, unstable regions can be 
described by the following inequalities: 
the first unstable region 

2𝛺√1 − 𝜇 ≤ 𝜃 ≤ 2𝛺√1 + 𝜇,                                                 (9) 

the second unstable region 

𝛺√1 − 2𝜇2 ≤ 𝜃 ≤ 𝛺√1 +
1

3
𝜇2.                                           (10) 

Sample Calculations 
Detailed studies are carried out for an exemplary family  

of three-layer beams. Stable and unstable regions are calculated 
for the three load cases – pulsating forces. 

The geometric dimensions of the beams are as follows: 
ℎ = 20 mm – total depth, 

𝐿 = 600 mm – length, 

𝜆 = 𝐿/ℎ = 30 – relative length, 
and the following mechanical properties are considered: 

𝐸𝑓 = 65 000 MPa – Young modulus in facings, 

𝜈𝑓 = 0.33 – Poisson ratio in facings, 

𝐸𝑐 = 1 200 MPa – Young modulus in the core, 

𝜈𝑐 = 0.3 – Poisson ratio in the core, 

𝜌𝑓 = 2 600 kg/m3 – mass density in facings, 

𝜌𝑐 = 350 kg/m3 – mass density in the core. 
The fundamental natural frequency  

𝜔 = (
𝜋

𝜆
)

2 106

1+2𝜒𝑓
√(1 − 𝐶𝑠𝑣)𝐶𝑣𝑣

𝐸𝑐

𝜌𝑏ℎ2,                                    (11) 

and the dimensionless critical force  

𝐹̃𝐶𝑅 =
𝐹𝐶𝑅

𝐸𝑐𝑏ℎ
= (

𝜋

𝜆
)

2
(1 − 𝐶𝑠𝑣)

𝐶𝑣𝑣

(1+2𝜒𝑓)
3,                                 (12) 

are calculated and specified in Tab. 1. 

Tab. 1. Dimensionless coefficients 𝛽𝑐 , 𝑘𝑓 , shear coefficient 𝐶𝑠𝑣,  

            fundamental natural frequency 𝜔 and dimensionless  

            critical force 𝐹̃𝐶𝑅 

𝝌𝒇 
𝟏

𝟏𝟖
 

𝟐

𝟏𝟔
 

𝟑

𝟏𝟒
 

𝟒

𝟏𝟐
 

𝟓

𝟏𝟎
 

𝛽𝑐 0.1097 0.06230 0.04127 0.02798 0.01847 

𝑘𝑓 0.07041 0.04187 0.03263 0.02862 0.02698 

𝐶𝑠𝑣 0.03488 0.05871 0.07476 0.08358 0.08552 

𝜔 [
1

𝑠
] 881.8 976.3 987.5 969.9 941.2 

𝐹̃𝐶𝑅 0.01359 0.02318 0.03038 0.03575 0.03971 
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Three load cases are taken into account (LC-1, LC-2, LC-3) – 
according to the parameter values given in Tab. 2. 

Tab. 2. Dimensionless coefficients, natural frequency and dimensionless 
critical force (λ = 30) 

Load case LC-1 LC-2 LC-3 

𝛼𝑎 0.5 1.0 1.5 

𝛼𝑚 0.5 0.25 0.1 

𝜇 1/2 2/3 5/6 

Then, the following unstable regions are determined for the 
following: 

 first load case LC-1 (Fig. 3)  
 the first unstable region (9):  

𝜔 ≤ 𝜃 ≤ √3 ⋅ 𝜔,  

 the second unstable region (10):  

1

2
⋅ 𝜔 ≤ 𝜃 ≤

1

2
√

13

6
⋅ 𝜔, 

 
Fig. 3. Unstable regions for the first load case (LC-1) 

 second load case LC-2 (Fig. 4)  

 the first unstable region (9):  

𝜔 ≤ 𝜃 ≤ √5 ⋅ 𝜔, 

 the second unstable region (10):  

√3

6
⋅ 𝜔 ≤ 𝜃 ≤

√31

6
⋅ 𝜔,  

 
Fig. 4. Unstable regions for the second load case (LC-2) 

 third load case LC-3 (Fig. 5)  

 the first unstable region (9)  

√15

5
⋅ ω ≤ θ ≤

√165

5
⋅ ω,  

 the second unstable region does not exist (10). 

 
Fig. 5. Unstable regions for the third load case (LC-3) 

4. CLASSICAL MODEL OF THE BEAM 

The classical beam model is a particular case of the beam 
model presented in Section 2, i.e. it is a simplification of the math-
ematical model. Therefore, the deformation of the plane cross 
section of the sandwich beam, taking into account the “broken 
line” hypothesis-theory, is shown in Fig. 6. 

 
Fig. 6. Scheme of the deformation of a plane cross section  

 of the beam –  the standard “broken line” hypothesis-theory 

Thus, the displacements, strains and stresses in the succes-
sive layers of the beam are as follows: 

 upper layer: − (1 + 2𝜒𝑓) 2⁄ ≤ 𝜂 ≤ − 1 2⁄   

𝑢(𝑢)(𝑥, 𝑦, 𝑡) = −ℎ𝑐 [𝜂
𝜕𝑣

𝜕𝑥
+ 𝑢̃1(𝑥, 𝑡)]                                    (13) 

𝜀𝑥
(𝑢)(𝑥, 𝑦, 𝑡) = −ℎ𝑐 [𝜂

𝜕2𝑣

𝜕𝑥2 +
𝜕𝑢1

𝜕𝑥
],    𝛾𝑥𝑦

(𝑢)(𝑥, 𝑦, 𝑡) = 0       (14) 

𝜎𝑥
(𝑢)(𝑥, 𝑦, 𝑡) = −𝐸𝑓ℎ𝑐 [𝜂

𝜕2𝑣

𝜕𝑥2 +
𝜕𝑢1

𝜕𝑥
],    𝜏𝑥𝑦

(𝑢)(𝑥, 𝑦, 𝑡) = 0   (15) 

 core: − 1 2⁄ ≤ 𝜂 ≤ 1 2⁄   

𝑢(𝑐)(𝑥, 𝑦, 𝑡) = −ℎ𝑐𝜂 [
𝜕𝑣

𝜕𝑥
− 2𝑢̃1(𝑥, 𝑡)]                                  (16) 
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𝜀𝑥
(𝑐)(𝑥, 𝑦, 𝑡) = −ℎ𝑐𝜂 [

𝜕2𝑣

𝜕𝑥2 − 2
𝜕𝑢1

𝜕𝑥
], 𝛾𝑥𝑦

(𝑐)(𝑥, 𝑡) = 2𝑢̃1(𝑥, 𝑡)              

                                                                                                      (17) 

𝜎𝑥
(𝑐)(𝑥, 𝑦, 𝑡) = −𝐸𝑐ℎ𝑐𝜂 [

𝜕2𝑣

𝜕𝑥2 − 2
𝜕𝑢1

𝜕𝑥
],                                 (18) 

𝜏𝑥𝑦
(𝑐)(𝑥, 𝑡) =

𝐸𝑐

1+𝜈𝑐
𝑢̃1(𝑥, 𝑡)  

 lower layer: 1 2⁄ ≤ 𝜂 ≤ 1 2 + 𝜒𝑓⁄   

𝑢(𝑙)(𝑥, 𝑦, 𝑡) = −ℎ𝑐 [𝜂
𝜕𝑣

𝜕𝑥
− 𝑢̃1(𝑥, 𝑡)]                                    (19) 

𝜀𝑥
(𝑙)(𝑥, 𝑦, 𝑡) = −ℎ𝑐 [𝜂

𝜕2𝑣

𝜕𝑥2 −
𝜕𝑢1

𝜕𝑥
], 𝛾𝑥𝑦

(𝑙)(𝑥, 𝑦, 𝑡) = 0,           (20) 

𝜎𝑥
(𝑙)(𝑥, 𝑦, 𝑡) = −𝐸𝑓ℎ𝑐 [𝜂

𝜕2𝑣

𝜕𝑥2 −
𝜕𝑢1

𝜕𝑥
] , 𝜏𝑥𝑦

(𝑙)(𝑥, 𝑦, 𝑡) = 0.      (21) 

Based on the Hamilton principle (4), two differential equations 
of motion are obtained in form (5), where dimensionless coeffi-
cients of a sandwich beam are as follows:  

𝐶𝑣𝑣 =
1

12
[1 + 2𝑒𝑓𝜒𝑓(3 + 6𝜒𝑓 + 4𝜒𝑓

2)],    

𝐶𝑣𝑢 =
1

6
[1 + 6𝑒𝑓𝜒𝑓(1 + 𝜒𝑓)],  

𝐶𝑢𝑢 =
1

3
(1 + 6𝑒𝑓𝜒𝑓), 𝐶𝑢 =

2

1+𝜈𝑐
,    𝑒𝑓 =

𝐸𝑓

𝐸𝑐
 , 𝜒𝑓 =

ℎ𝑓

ℎ𝑐
 .     

The fundamental natural frequency ω [1/s] and the dimension-

less critical force 𝐹̃𝐶𝑅  have identical forms (11) and (12), where 
the dimensionless coefficient is as follows: 

𝐶𝑠𝑣 =
𝜋2

𝐶𝑣𝑣
⋅

𝐶𝑣𝑢
2

𝜋2𝐶𝑢𝑢+𝜆𝑐
2𝐶𝑢

.   

Detailed calculations are performed for sample data from sec-

tion 4. The values of the dimensionless coefficient 𝐶𝑠𝑣, the fun-

damental natural frequency 𝜔 [1/s] and the dimensionless critical 

force 𝐹̃𝐶𝑅  are specified in Tab. 3.  

Tab. 3. Results of analytical calculations of the exemplary beams 

𝝌𝒇 
𝟏

𝟏𝟖
 

𝟐

𝟏𝟔
 

𝟑

𝟏𝟒
 

𝟒

𝟏𝟐
 

𝟓

𝟏𝟎
 

𝐶𝑠𝑣 0.03534 0.05927 0.07519 0.08374 0.08531 

𝜔 [
1

𝑠
] 881.6 976.0 987.2 969.9 941.3 

𝐹̃𝐶𝑅 0.01358 0.02316 0.03037 0.03574 0.03972 

As a result of comparing the values of the fundamental natural 

frequencies 𝜔 [1/s] and the dimensionless critical forces 𝐹̃𝐶𝑅  
calculated based on the generalised model (Tab. 1) and the clas-
sical sandwich beam model (Tab. 3), it is easy to see that these 
differences are negligible. Thus, the unstable regions calculated 
with consideration of two models of sandwich beams are identical. 

5. CONCLUSIONS 

Summing up the research presented in this article, the follow-
ing conclusions can be drawn: 

 the assumed non-linear hypothesis-theory of deformation of a 
plane cross section of the beam takes into account the shear 
effect in the facings, so it is a generalisation of the "broken 

line" hypothesis, in which the shear effect in the facings is 
omitted, 

 the influence of the shear effect in the beam facings on the 
values of the fundamental natural frequency 𝜔 and the critical 

load–force 𝐹̃𝐶𝑅 is negligibly small, which is easy to see when 
comparing their values specified in Tabs 1 and 3, 

 the influence of the three-layer beam structure, i.e. the ratio of 
the thickness of the facings to the thickness of the core (value 

of the parameter 𝜒𝑓), on the values of the fundamental natural 

frequency ω and the critical load force 𝐹̃𝐶𝑅  is significant (Tabs 
1 and 3), which is graphically presented in Figs 7 and 8. 

 
Fig. 7. Fundamental natural frequency 

 
Fig. 8. Critical load–force 

Therefore, based on the aforementioned, it can be concluded 
that when examining critical loads, fundamental natural frequen-
cies and unstable regions, it is sufficient to apply the "broken line" 
hypothesis. 
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