Warianty tytułu
Języki publikacji
Abstrakty
Encouraged by recent studies and considering the well-documented problems occurring during AlN synthesis, we have chosen two diagnostic methods which would enable us to fully control the process of synthesis and characterize the synthesized aluminum nitride films. In our experiment we have compared the results coming from OES measurements of plasma and circulating power characteristics of the power supply with basic features of the deposited layers. The dual magnetron system operating in AC mode was used in our studies. Processes of aluminum target sputtering were carried out in an atmosphere of a mixture of argon and nitrogen. The plasma emission spectra were measured with the use of a monochromator device. Analyses were made by comparing the positions and intensities of spectral lines of the plasma components. The results obtained allowed us to characterize the sputtering process under various conditions of gas mixture compositions as well as power distribution more precisely, which is reported in this work. The measured spectra were related to the deposition rate, the structure morphology of the films and chemical composition. Our work proved that the use of plasma OES and circulating power measurements make possible to control the process of sputtering and synthesis of deposited films in situ.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
894--901
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland, rafal.chodun@inmat.pw.edu.pl
autor
- National Centre for Nuclear Research (NCBJ), Andrzeja Soltana 7, 05-400 Otwock-Swierk, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
Bibliografia
- [1] Guo Q., Yoshida A., Jpn. J. Appl. Phys., 33 (1994), 2453.
- [2] Teisseyre H., Perlin P., Suski T., Grzegory I., Porowski S., Jun J., Pietraszko A., Moustakas T.D., J. Appl. Phys., 76 (1994), 2429.
- [3] Yamashita H., Fukui K., Misawa S., Yoshida S., J. Appl. Phys., 50 (1979), 896.
- [4] Slack G.A., Tanzilli R.A., Pohl R.O., Vandersande J.W., J. Phys. Chem. Solids, 48 (1987), 641.
- [5] Chiu K.H., Chen J.H., Chen H.R., Huang R.S., Thin Solid Films, 515 (2007), 4819.
- [6] Yang R.Y., Hsiung C.M., Chen H.H., Wu H.W., Shih M.C., Microw. Optic. Tech. Lett., 50 (2008), 2863.
- [7] Bose S., Mazumder S.K., Solid State Electron., 62 (2011), 5.
- [8] Kelekci O., Tasli P., Cetin S., Kasap M., Ozcelik S., Ozbay E., Curr. Appl. Phys., 12 (2012), 1600.
- [9] Doyennette L., Vardi A., Guillot F., Nevou L., Tchernycheva M., Lupu A., Colombelli R., Bahir G., Monroy E., Julien F.H., Superlattice. Microst., 40 (2006), 262.
- [10] Yu C.L., Chang S.J., Chang P.C., Lin Y.C., Lee C.T., Superlattice. Microst., 40 (2006), 470.
- [11] Iborra E., Olivares J., Clement M., Vergara L., Sanz-Hervás A., Sangrador J., Sensor. Actuat. A-Phys., 115 (2004), 501.
- [12] Belyanin A.F., Bouilov L.L., Zhirnov V.V., Kamenev A.I., Kovalskij K.A., Spitsyn B.V., Diam. Relat. Mater., 8 (1999), 369
- [13] Vacandio F., Massiani Y., Gravier P., Rossi S., Bonora P.L., Fedrizzi L., Electrochim. Acta, 46 (2001), 3827.
- [14] Altun H., Sen S., Surf. Coat. Tech., 197 (2005), 193.
- [15] Vissutipitukul P., Aizawa T., Wear, 259 (2005), 482.
- [16] Yao S.H., Su Y.L., Kao W.H., Liu T.H., Tribol. Int., 39 (2006), 332.
- [17] Qiu J.Y., Hotta Y., Watari K., Mitsuishi K., Yamazaki M., J. Eur. Ceram. Soc., 26 (2006), 385.
- [18] Fischer R.A., Miehr A., Ambacher O., Metzger T., Born E., J. Cryst. Growth, 170 (1997), 139.
- [19] Tanaka Z., Hasebe Z., Inushima T., Sandhu A., Ohoya S., J. Cryst. Growth, 209 (2000), 410.
- [20] Dimitrova V., Manova D., Paskova T., Uzunov T., Ivanov N., Dechev D., Vacuum, 51 (1998), 161.
- [21] Manova D., Dimitrova V., Fukarek W., Karpuzov D., Surf. Coat. Tech., 106 (1998), 205.
- [22] Posadowski W. M., Wiatrowski A., Dora J., Radzimski Z.J., Thin Solid Films, 516 (2008), 4478.
- [23] Krówka K., Wiatrowski A., Posadowski W.M., Thin Solid Films, 520 (2012), 4127.
- [24] Kramida A., Ralchenko YU., Reader J., NIST ASD TEAM (2014), NIST Atomic Spectra Database (version 5.2), http://physics.nist.gov/asd, National Institute of Standards and Technology, Gaithersburg, MD, 2014.
- [25] Manjon F.J., Errandonea D., Romero A. H., Garro N., Serrano J., Kuball M., Phys. Rev. B, 77 (2008), 205204.
- [26] Guillaumot A., Lapostolle F., Dublanche-Tixier C., Oliveira J.C., Billard A., Langlade C., Vacuum, 85 (2010), 120.
- [27] Brudnik A., Czapla A., Kusior E., Thin Solid Films 478 (2005), 6.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b13732b6-7892-4fc4-b644-d25cdcb9a47e