Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 8 | 347--356
Tytuł artykułu

Brackish Water Desalination by Nanofiltration–Effect of Process Parameters

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Brackish water is an important source of water resources with lower salt content than seawater. Desalination is a very important treatment to remedy the scarcity of fresh water throughout the world. In this work, it has been proposed to desalinate brackish groundwater using a commercial nanofiltration membrane. The experiments were carried out on the basis of a factorial design using three factors and two levels of study for each variable. For this purpose, it selected the feed pressure (X1) of the membrane module at (60 and 100 psi), feed water salinity (X2) at levels of (3.4 and 6.01 mS/cm) and operating temperature (X3) at levels (20 and 28°C) to evaluate its effect on the percentage flux recovery and salt retention. The results showed that the most significant variable is the feed pressure, achieving higher flow recovery and the percentage of salinity rejection at the 100 Psi level. This showed that by increasing the pressure from (60 to 100 psi), there was a considerable increase in flow recovery (42 to 72%) and salt rejection (24.6 to 28.4%). Likewise, by increasing the temperature from 20 to 28°C, the recovered f low rate increased from (49.78 to 63.2%) and the percentage of salt separation showed an increase from 25.95 to 27.05%. Similarly, by increasing the starting conductivity of the brackish water from (3.4 to 6.01 mS/cm) the percentage of flow recovery has decreased from (61.46 to 51.525%). Likewise, the permeate flow rate increased linearly with feed pressure from 132 L/h (P=40 Psi) to 420 L/h (108 Psi). In conclusion, this research confirms the suitability of the commercial NF membrane studied for brackish water desalination.
Wydawca

Rocznik
Strony
347--356
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Centro de Investigación de Ingeniería de Procesos de Tratamiento de Aguas, Facultad de Ingeniería Química, Universidad Nacional del Callao, Perú, jtmedinac@unac.edu.pe
  • Centro de Investigación de Ingeniería de Procesos de Tratamiento de Aguas, Facultad de Ingeniería Química, Universidad Nacional del Callao, Perú, caancietad@unac.edu.pe
  • Centro de Investigación de Ingeniería de Procesos de Tratamiento de Aguas, Facultad de Ingeniería Química, Universidad Nacional del Callao, Perú, jorodriguezt@unac.edu.pe
  • Centro de Investigación de Ingeniería de Procesos de Tratamiento de Aguas, Facultad de Ingeniería Química, Universidad Nacional del Callao, Perú, lacarrascov@unac.edu.pe
  • Centro de Investigación de Ingeniería de Procesos de Tratamiento de Aguas, Facultad de Ingeniería Química, Universidad Nacional del Callao, Perú, jamontanop@unac.edu.pe
  • Centro de Investigación de Ingeniería de Procesos de Tratamiento de Aguas, Facultad de Ingeniería Química, Universidad Nacional del Callao, Perú, pbdiazb@unac.edu.pe
  • Facultad de Ingeniería Química, Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Perú, svasquezll@unprg.edu
Bibliografia
  • 1. Ahmad A., and Alshammari M.B. (Eds.) 2023. Nanofiltration Membrane for Water Purification. Sustainable Materials and Technology. Springer.
  • 2. Bohonak, D.M., and Zydney, A.L. 2005. Compaction and permeability effects with virus filtration membranes. Journal of Membrane Science 254(12), 71–79. doi: 10.1016/j.memsci.2004.12.035.
  • 3. Caldera, U., and Breyer, C. 2023. Afforesting Arid Land with Renewable Electricity and Desalination to Mitigate Climate Change. Nature Sustainability 6(5), 526–38. doi: 10.1038/s41893-022-01056-7.
  • 4. Daly, S., Allen, A., Koutsos, V., and Semião, A.J.C. 2020. Influence of organic fouling layer characteristics and osmotic backwashing conditions on cleaning efficiency of RO membranes. Journal of Membrane Science 616. doi: 10.1016/j.memsci.2020.118604.
  • 5. Deepti, A. Sinha, P. Biswas, S. Sarkar, Bora, U., Purkait, M.K. 2020. Separation of chloride and sulphate ions from nanofiltration rejected wastewater of steel industry. Journal of Water Process Engineering 33. doi: 10.1016/j.jwpe.2019.101108.
  • 6. Eke, J., Yusuf, A. Giwa A., and Sodiq A. 2020. The global status of desalination: an assessment of current desalination technologies, plants and capacity. Desalination 495. doi: 10.1016/j.desal.2020.114633.
  • 7. Elazhar, F., Elazhar, M., El-Ghzizel, S., Tahaikt, M., Zait, M., Dhiba, D., Elmidaoui, A., and Taky, M. 2021. Nanofiltration-reverse osmosis hybrid process for hardness removal in brackish water with higher recovery rate and minimization of brine discharges. Process Safety and Environmental Protection 153, 376–83. doi: 10.1016/j.psep.2021.06.025.
  • 8. Fritzmann, C., Löwenberg, J., Wintgens, T. and Melin, T. 2007. State-of-the-Art of Reverse Osmosis Desalination. Desalination 216(1–3), 1–76. doi: 10.1016/j.desal.2006.12.009.
  • 9. Galanakis, C.M., Fountoulis, G. and Gekas V. 2012. Nanofiltration of brackish groundwater by using a polypiperazine membrane. Desalination 286, 27784. doi: 10.1016/j.desal.2011.11.035.
  • 10. Hendaoui, K., Ayari, F., Rayana, I.B., Amar, RB., Darragi, F. and Trabelsi-Ayadi M. 2018. Real indigo dyeing effluent decontamination using continuous electrocoagulation cell: study and optimization using response surface methodology. Process Safety and Environmental Protection 116:578–89. doi: 10.1016/j.psep.2018.03.007.
  • 11. Jeon, Jongmin, Dongkeon Kim, Noori Kim, and Suhan Kim. 2023. Applicability and Limitation of the Industrial Reverse Osmosis System Simulators. Desalination 549(January): 116358. doi: 10.1016/j.desal.2022.116358.
  • 12. Kammoun, M.A., Gassara, S., Palmeri, J., Amar, B. and Deratani, A. 2020. Nanofiltration Performance Prediction for Brackish Water Desalination: Case Study of Tunisian Groundwater. Desalination and Water Treatment 181. doi: 10.5004/dwt.2020.25100ï.
  • 13. Khan, N.A., Singh, S., López-Maldonado, E.A., Pavithra N., Méndez-Herrera, P.F., López-López, J.R., Baig, U., Ramamurthy, P.C., Mubarak, N.M., Karri, R.R., and Aljundi, I.H. 2023. Emerging membrane technology and hybrid treatment systems for the removal of micropollutants from wastewater. Desalination 565. doi: 10.1016/j.desal.2023.116873.
  • 14. Lin, S. 2020. Energy efficiency of desalination: fundamental insights from intuitive interpretation. Environmental Science and Technology 54(1), 76–84. doi: 10.1021/acs.est.9b04788.
  • 15. Liu, J., Yue, M., Chen, X., Ling, Q., Wei, Q., Wang, Z., Wang, J. Zhao, L. 2022. Refining underground brine in soda production via nanofiltration technology: experimental investigation and largescale industrial production. Desalination 540. doi: 10.1016/j.desal.2022.115978.
  • 16. Lu, K.G., and Huang, H. 2019. Dependence of initial silica scaling on the surface physicochemical properties of reverse osmosis membranes during benchscale brackish water desalination. Water Research 150, 358–67. doi: 10.1016/j.watres.2018.11.073.
  • 17. Madaeni, S.S., Shiri, M. and Kurdian A.R. 2015. Modeling, optimization, and control of reverse osmosis water treatment in kazeroon power plant using neural network. Chemical Engineering Communications 202(1), 6–14. doi: 10.1080/00986445.2013.828606.
  • 18. Meshram, S., Thakur, R.S., Jyoti, G., Thakur, C. and Soni, A.B. 2022. Optimization of lead adsorption from lead-acid battery recycling unit wastewater using H2SO4 modified activated carbon. Journal of the Indian Chemical Society 99(6), 100469. doi: 10.1016/j.jics.2022.100469.
  • 19. Mickols, W., Mai, Z. and van der Bruggen, B. 2021. Effect of pressure and temperature on solvent transport across nanofiltration and reverse osmosis membranes: an activity-derived transport model. Desalination 501. doi: 10.1016/j.desal.2020.114905.
  • 20. Mohammad, A.W., Teow, Y.H., Ang, W.L., Chung, Y.T., Oatley-Radcliffe, D.L. and Hilal, N. 2015. Nanofiltration membranes review: recent advances and future prospects. Desalination 356, 226–54.
  • 21. Panagopoulos, A. 2021. Energetic, economic and environmental assessment of zero liquid discharge (ZLD) brackish water and seawater desalination systems. Energy Conversion and Management 235. doi: 10.1016/j.enconman.2021.113957.
  • 22. Sohum, K.P., Lee, B., Westerhoff, P. and Elimelech, M. 2024. the potential of electrodialysis as a costeffective alternative to reverse osmosis for brackish water desalination. Water Research 250. doi: 10.1016/j.watres.2023.121009.
  • 23. Pervov, A., and Spitsov, D. 2023. Control of the ionic composition of nanofiltration membrane permeate to improve product water quality in drinking water supply applications. Water (Switzerland) 15(16). doi: 10.3390/w15162970.
  • 24. Pino, L., Beltran, E., Schwarz, A., Ruiz, M.C. Borquez, R. 2020. Optimization of nanofiltration for treatment of acid mine drainage and copper recovery by solvent extraction. Hydrometallurgy 195. doi: 10.1016/j.hydromet.2020.105361.
  • 25. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marĩas, B.J., Mayes, A.M. 2008. Science and technology for water purification in the coming decades. Nature 452(7185), 301–10.
  • 26. Shenvi, S.S., Isloor, A.M. and Ismail A.F. 2015. A Review on RO Membrane Technology: Developments and Challenges. Desalination 368, 10–26.
  • 27. Srimuk, P., Su, X., Yoon, J., Aurbach, D. and Presser, V. 2020. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nature Reviews Materials 5(7), 517–38.
  • 28. Strathmann, H. 2010. Electrodialysis, a mature technology with a multitude of new applications. Desalination 264(3), 268–88. doi: 10.1016/j.desal.2010.04.069.
  • 29. Tan, G., Wan, S., Mei, S.C., Gong, B., Qian, C. and Chen, J.J. 2023. Boosted brackish water desalination and water softening by facilely designed MnO2/Hierarchical porous carbon as capacitive deionization electrode. Water Research X 19. doi: 10.1016/j.wroa.2023.100182.
  • 30. Thakur, C. 2020. Electrocoagulation Treatment of Automobile Wastewater: Optimization by RSM.” IOP Conference Series: Earth and Environmental Science 597(1). doi: 10.1088/1755-1315/597/1/012017.
  • 31. Tian, J., Zhao, X., Gao, S., Wang, X. and Zhang, R. 2021. Progress in Research and Application of Nanofiltration (Nf) Technology for Brackish Water Treatment. Membranes 11(9).
  • 32. Wajima, T., and Sekihata, F. 2023. Desalination behaviors from seawater using natural zeolite and calcined ca-fe layered double hydroxide for cultivation. International Journal of GEOMATE 24(105), 33–40. doi: 10.21660/2023.105.g12109.
  • 33. Wang, R., Lin, S. 2021. Pore model for nanofiltration: history, theoretical framework, key predictions, limitations, and prospects. Journal of Membrane Science 620.
  • 34. Wang, Z., Wang, Z., Lin, S., Jin, H., Gao, S., Zhu, Y. and Jin J. 2018. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nature Communications 9(1). doi: 10.1038/s41467-018-04467-3.
  • 35. Xu, R., Zhou, M., Wang, H., Wang, X. and Wen, X. 2020. Influences of temperature on the retention of PPCPs by nanofiltration membranes: experiments and modeling assessment. Journal of Membrane Science 599. doi: 10.1016/j.memsci.2020.117817.
  • 36. Yasukawa, M., Mehdizadeh, S., Sakurada, T., Abo, T., Kuno, M. and Higa, M. 2020. Power generation performance of a bench-scale reverse electrodialysis stack using wastewater discharged from sewage treatment and seawater reverse osmosis. Desalination 491. doi: 10.1016/j.desal.2020.114449.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b116fac1-2f5f-423a-a736-1b48acf23e3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.