Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 68, nr 5 | 371--393
Tytuł artykułu

On the well-posedness of the time-differential three-phase-lag thermoelasticity model

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper analyzes the time differential three-phase-lag model of coupled thermoelasticity. The uniqueness and continuous dependence results are established for the solutions of the corresponding initial boundary value problems associated with the model in concern. The key tool of the method is to associate with the basic initial boundary value problem of the model an appropriate auxiliary initial boundary value problem and then to establish an identity of Lagrange type. This last identity is used to analyze the uniqueness of solutions under appropriate mild restrictions assumed upon the constitutive coefficients and upon the delay times. Uniqueness question is also discussed for a set of models of thermoelasticity developed in literature. Further, for the continuous dependence problem an appropriate estimate of the solution is obtained in terms of the given data. This expresses the continuous dependence of solution with respect to the initial data and with respect to the given supply loads, provided some appropriate constitutive assumptions are considered. These results give information upon the well-posedness of the time differential three-phase-lag model of coupled thermoelasticity.
Wydawca

Rocznik
Strony
371--393
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • Department of Information Engineering, Electrical Engineering and Applied Mathematics, DIEM University of Salerno Fisciano, (SA), Italy, cdapice@unisa.it
autor
  • Faculty of Mathematics Al. I. Cuza University of Iasi 700506 – Iasi, Romania, schirita@uaic.ro
  • Octav Mayer Mathematics Institute Romanian Academy of Science, Iasi Branch 700505 – Iasi, Romania
autor
  • Department of Information Engineering, Electrical Engineering and Applied Mathematics, DIEM University of Salerno Fisciano, (SA), Italy, vzampoli@unisa.it
Bibliografia
  • 1. D.Y. Tzou, A unified approach for heat conduction from macro to micro-scales, ASME Journal of Heat Transfer, 117, 8–16, 1995.
  • 2. M. Fabrizio, F. Franchi, Delayed thermal models: Stability and thermodynamics, Journal of Thermal Stresses, 37, 160–173, 2014.
  • 3. M. Fabrizio, B. Lazzari, Stability and second law of thermodynamics in dual-phase-lag heat conduction, International Journal of Heat and Mass Transfer, 74, 484–489, 2014.
  • 4. R. Quintanilla, Exponential stability in the dual-phase-lag heat conduction theory, Journal of Non-Equilibrium Thermodynamics, 27, 217–227, 2002.
  • 5. K. Ramadan, Semi-analytical solutions for the dual phase lag heat conduction in multilayered media, International Journal of Thermal Sciences, 48, 14–25, 2009.
  • 6. A.H. Akbarzadeh, Z.T. Chen, Transient heat conduction in a functionally graded cylindrical panel based on the dual phase lag theory, International Journal of Thermophysics, 33, 1100–1125, 2012.
  • 7. N. Afrin, Y. Zhang, J.K. Chen, Dual-phase lag behavior of a gas-saturated porousmedium heated by a short-pulsed laser, International Journal of Thermal Sciences, 75, 21–27, 2014.
  • 8. A.E. Green, P.M. Naghdi, On undamped heat waves in an elastic solid, Journal of Thermal Stresses, 15, 253–264, 1992.
  • 9. A.E. Green, P.M. Naghdi, Thermoelasticity without energy dissipation, Journal of Elasticity, 31, 189–208, 1993.
  • 10. A.E. Green, P.M. Naghdi, A unified procedure for construction of theories of deformable media. I. Classical continuum physics, II. Generalized continua, III. Mixtures of interacting continua, Proceedings of the Royal Society London A, 448, 335–356, 357–377, 379–388, 1995.
  • 11. H. von Helmholtz, Prinzipien der Statik monocyklischer Systeme, Borchardt-Crelle’s Journal für Die Reine Und Angewandte Mathematik, 97, 111–140, 1884.
  • 12. H. von Helmholtz, Studien zur Statik monocyklischer Systeme, Sitzungsberichte der Kniglich Preussischen Akademie der Wissenschaften zu Berlin, I, 159–177, 1884.
  • 13. P. Podio-Guidugli, A virtual power format for thermomechanics, Continuum Mechanics and Thermodynamics, 20, 479–487, 2009.
  • 14. S.K. Roy Choudhuri, On a thermoelastic three-phase-lag model, Journal of Thermal Stresses, 30, 231–238, 2007.
  • 15. D.Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior, John Wiley and Sons, Chichester, 2015.
  • 16. R. Quintanilla, A well posed problem for the dual-phase-lag heat conduction, Journal of Thermal Stresses, 31, 260–269, 2008.
  • 17. R. Quintanilla, A well-posed problem for the three-dual-phase-lag heat conduction, Journal of Thermal Stresses, 32, 1270–1278, 2009.
  • 18. R. Quintanilla, R. Racke, A note on stability in three-phase-lag heat conduction, International Journal of Heat and Mass Transfer, 58, 24–29, 2008.
  • 19. S. Chiriµă, C. D’Apice, V. Zampoli, The time differential three-phase-lag heat conduction model: Thermodynamic compatibility and continuous dependence, International Journal of Heat and Mass Transfer, 102, 226–232, 2016.
  • 20. M. Wang, N. Yang, Z.Y. Guo, Non-Fourier heat conduction in nanomaterials, Journal of Applied Physics, 110, 064310-1-7, 2011.
  • 21. A.H. Akbarzadeh, D. Pasini, Phase-lag heat conduction in multilayered cellular media with imperfect bonds, International Journal of Heat and Mass Transfer, 75, 656–667, 2014.
  • 22. A.H. Akbarzadeh, J.W. Fu, Z.T. Chen, Three-phase-lag heat conduction in a functionally graded hollow cylinder, Transactions of the Canadian Society for Mechanical Engineering, 38, 155–171, 2014.
  • 23. A.E. Green, P.M. Naghdi, On undamped heat waves in an elastic solid, Journal of Thermal Stresses, 15, 253–264, 1992.
  • 24. A.E. Green, P.M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proceedings of the Royal Society London A, 432, 171–194, 1991.
  • 25. D.D. Joseph, L. Preziosi, Heat waves, Reviews of Modern Physics, 61, 41–73, 1989.
  • 26. D.D. Joseph, L. Preziosi, Addendum to the paper “Heat waves”, Reviews of Modern Physics, 62, 375–391, 1990.
  • 27. H.W. Lord, Y.H. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids, 15, 299–309, 1967.
  • 28. C.M. Dafermos, The second law of thermodynamics and stability, Archive for Rational Mechanics and Analysis, 70, 167–179, 1979.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b10c7a19-9ee9-4362-9b87-dcbb8a89ffe7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.