Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 25, Iss. 4 | 221--228
Tytuł artykułu

EPID – a useful interfraction QC tool

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biomedical accelerators used in radiotherapy are equipped with detector arrays which are commonly used to obtain the image of patient position during the treatment session. These devices use both kilovolt and megavolt x-ray beams. The advantage of EPID (Electronic Portal Imaging Device) megavolt panels is the correlation of the measured signal with the calibrated dose. The EPID gives a possibility to verify delivered dose. The aim of the study is to answer the question whether EPID can be useful as a tool for interfraction QC (quality control) of dose and geometry repeatability. The EPID system has been calibrated according to the manufacturer’s recommendations to obtain a signal and dose values correlation. Initially, the uncertainty of the EPID matrix measurement was estimated. According to that, the detecting sensitivity of two parameters was checked: discrepancies between the planned and measured dose and field geometry variance. Moreover, the linearity of measured signal-dose function was evaluated. In the second part of the work, an analysis of several dose distributions was performed. In this study, the analysis of clinical cases was limited to stereotactic dynamic radiotherapy. Fluence maps were obtained as a result of the dose distribution measurements with the EPID during treatment sessions. The compatibility of fluence maps was analyzed using the gamma index. The fluence map acquired during the first fraction was the reference one. The obtained results show that EPID system can be used for interfraction control of dose and geometry repeatability.
Słowa kluczowe
Wydawca

Rocznik
Strony
221--228
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Medical Physics Department, Zagłębiowskie Oncology Center, Dąbrowa Górnicza, Poland
  • Medical Physics Department, Institute of Physics, University of Silesia, Chorzów, Poland
  • Radiotherapy Planning Department, Maria Sklodowska-Curie Institute – Oncology Center Gliwice Branch, Gliwice, Poland
  • Radiotherapy Planning Department, Maria Sklodowska-Curie Institute – Oncology Center Gliwice Branch, Gliwice, Poland
  • Radiotherapy Planning Department, Maria Sklodowska-Curie Institute – Oncology Center Gliwice Branch, Gliwice, Poland
  • Medical Physics Department, Maria Sklodowska-Curie Institute – Oncology Center Gliwice Branch, Gliwice, Poland
  • Radiotherapy Planning Department, Maria Sklodowska-Curie Institute – Oncology Center Gliwice Branch, Gliwice, Poland
  • IT Department, Maria Sklodowska-Curie Institute – Oncology Center Gliwice Branch, Gliwice, Poland
  • Radiotherapy Planning Department, Maria Sklodowska-Curie Institute – Oncology Center Gliwice Branch, Gliwice, Poland
  • Radiotherapy Planning Department, Maria Sklodowska-Curie Institute – Oncology Center Gliwice Branch, Gliwice, Poland, jacek.wendykier@io.gliwice.pl
  • Radiotherapy Planning Department, Maria Sklodowska-Curie Institute – Oncology Center Gliwice Branch, Gliwice, Poland
Bibliografia
  • [1] Herman MG, Balter JM, Jaffray DA, et al. Clinical use of electronic portal imaging: Report of AAPM Radiation Therapy Committee Task Group 58. Med Phys. 2001;28(5):712-737.
  • [2] Herman MG, Kruse JJ, Hagness CR. Guide to clinical use of electronic portal imaging. J Appl Clin Med Phys. 2000;1(2):38-57.
  • [3] Bogaerts R, Van Esch A, Reymen R, Huyskens D. A method to estimate the transit dose on the beam axis for verification of dose delivery with portal images. Radiother Oncol. 2000;54(1):39-46.
  • [4] Pasma KL, Kroonwijk M, Quint S, et al. Transit dosimetry with an electronic portal imaging device (EPID) for 115 prostate cancer patients. Int J Radiat Oncol Biol Phys. 1999;45(5):1297-1303.
  • [5] Kroonwijk M, Pasma KL, Quint S, et al. In vivo dosimetry for prostate cancer patients using an electronic portal imaging device (EPID); demonstration of internal organ motion. Radiother Oncol. 1998;49(2):125-132.
  • [6] Huyskens D, Van Dam J, Dutreix A. Midplane dose determination using in vivo dose measurements in combination with portal imaging. Phys Med Biol. 1994;39(7):1089-1101.
  • [7] Woźniak B, Ganowicz M, Bekman A, Maniakowski Z. A comparison of the dosimetric properties of The Electronic Portal Imaging Devices (EPIDs) LC250 and aS500. Rep Pract Oncol Radiother. 2005;10(5):249-254.
  • [8] Ganowicz M, Woźniak B, Bekman A, Maniakowski Z. Using an electronic portal imaging device for exit dose measurements in radiotherapy. Nowotwory J Oncol. 2003;53(6):626-629.
  • [9] Ding GX, Munro P. Comparing MV And kV Imaging Doses For Image Guided Radiation Therapy. Proceedings of the 53rd Annual ASTRO Meeting. Int J Radiat Oncol Biol Phys. 2011;81(2 Supp):S771-S772
  • [10] Boas FE, Fleischmann D. CT artifacts: Causes and reduction techniques. Imaging Med. 2012;4(2):229-240.
  • [11] Li H, Noel C, Chen H, et al. Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy. Med Phys. 2012;39(12):7507-7517.
  • [12] Boas FE, Fleischmann D. Evaluation of Two Iterative Techniques for Reducing Metal Artifacts in Computed Tomography. Radiology. 2011;259(3):894-902.
  • [13] van Zijtveld M, Dirkx ML, de Boer HC, Heijmen BJ. Dosimetric pre-treatment verification of IMRT using an EPID; clinical experience. Radiother Oncol. 2006;81(2):168-175.
  • [14] Wendling M, Louwe RJ, McDermott LN, et al. Accurate two-dimensional IMRT verification using a back-projection EPID dosimetry method. Med Phys. 2006;33(2):259-273.
  • [15] McDermott LN, Wendling M, Sonke JJ, et al. Replacing pretreatment verification with in vivo EPID dosimetry for prostate IMRT. Int J Radiat Oncol Biol Phys. 2007;67(5):1568-1577.
  • [16] McDermott LN, Wendling M, Nijkamp J, et al. 3D in vivo dose verification of entire hypo-fractionated IMRT treatments using an EPID and cone-beam CT. Radiother Oncol. 2008;86(1):35-42.
  • [17] van Elmpt W, Nijsten S, Mijnheer B, et al. The next step in patient-specific QA: 3D dose verification of conformal and intensitymodulated RT based on EPID dosimetry and Monte Carlo dose calculations. Radiother Oncol. 2008;86(1):86-92.
  • [18] van Elmpt W, Nijsten S, Petit S, et al. 3D in vivo dosimetry using megavoltage, cone-beam CT and EPID dosimetry. Int J Radiat Oncol Biol Phys. 2009;73(5):1580-1587.
  • [19] van Elmpt W, Petit S, De Ruysscher D, et al. 3D dose delivery verification using repeated cone-beam imaging and EPID dosimetry for stereotactic body radiotherapy of non-small cells lung cancer. Radiother Oncol. 2010;94(2):188-194.
  • [20] Mijnheer B, Olaciregui-Ruiz I, Rozendaal R, et al. 3D EPID – based in vivo dosimetry for IMRT and VMAT. J Phys: Conf Series. 2013;444:012011.
  • [21] van Zijtveld M, Dirkx ML, de Boer HC, Heijmen BJ. 3D dose reconstruction for clinical evaluation of IMRT pretreatment verification with an EPID. Radiother Oncol. 2017;82(2):201-207.
  • [22] TRUEBEAM STx System Specifications. Available at : varian.com.
  • [23] Eclipse Photon and Electron Algorithms Reference Guide, P1008611-002-B, Varian Medical Systems (September 2014).
  • [24] Portal Dosimetry Reference Guide, P1001364B, Varian Medical Systems (2013).
  • [25] Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25(5): 656-661.
  • [26] Slosarek K, Szlah M, Bekman B, Grzadziel A. EPID in vivo dosimetry in RapidArc technique. Rep Pract Oncol Radiother. 2010;15(1):8-14.
  • [27] Fidanzio A, Cilla S, Greco F, et al. Generalized EPID calibration for in vivo transit dosimetry. Phys Med. 2011;27(1):30-38.
  • [28] Valve A, Keyriläinen J, Kulmala J. Compass model-based quality assurance for stereotactic VMAT treatment plans. Phys Med. 2017;44:42-50.
  • [29] Nakaguchi Y, Ono T, Maruyama M, et al. Validation of a method for in vivo 3D dose reconstruction in SBRT using a new transmission detector. J Appl Clin Med Phys. 2017;18(4):69-75.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b0ff5aa5-cae5-49df-bdf5-527c620d4cfb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.