Warianty tytułu
Języki publikacji
Abstrakty
The behaviour of energy levels and optical spectra of a charged particle (electron or hole) confined within a potential well of ellipsoidal shape is investigated as a function of the shape-anisotropy parameter. If two energy levels of the same symmetry intersect in a perturbation-theory approximation, they move apart on direct diagonalization of the appropriate Hamiltonian. The intersection of the energy levels leads to a discontinuity of the corresponding dipole-moment matrix element. The discontinuity of matrix elements is not reflected in the behaviour of transition probabilities which are continuous functions of the shape-anisotropy parameter. The profiles of a spectral line emitted or absorbed by an ensemble of ellipsoidally shaped nanoparticles with a Gaussian distribution of size are calculated and discussed.
Czasopismo
Rocznik
Tom
Strony
134--140
Opis fizyczny
Bibliogr. 27 poz., wykr.
Twórcy
autor
- Faculty of Exact and Natural Sciences, Tbilisi State University, 1 Chavchavadze Ave., 0179 Tbilisi, Georgia, tamaz.kereselidze@tsu.ge
autor
- Faculty of Exact and Natural Sciences, Tbilisi State University, 1 Chavchavadze Ave., 0179 Tbilisi, Georgia
autor
- St. Petersburg State University, 11/2 Lieutenant Schmidt Emb., St. Petersburg 199034, Russia
Bibliografia
- [1] P. Harrison, Quantum Well, Wires and Dots, Wiley, New York USA, 2005.
- [2] T. Chakraborty, Quantum Dots: A Survey of the Properties of Artificial Atoms,Elsevier, Science, Amsterdam, Netherlands, 1999.
- [3] M. Kuno, Introductory Nanoscience, Garland Science, London, UK and NewYork, USA, 2012.
- [4] K. Warda, The size effect in the equation of state for nanostructures, J. Phys.:Condens. Matter 21 (2009) 345301.
- [5] A. Shabaev, Al. L. Efros, 1D Exciton Spectroscopy of Semiconductor Nanorods,Nano Lett. 4 (2004) 1821.
- [6] B. Zh. Pogosyan, G.H. Demitjian, Binding energy of hydrogenic impurities inquantum well, wires of InSb/GaAs, Physica B 338 (2003) 357.
- [7] G. Cantele, D. Ninno, G. Iadonisi, Calculation of the Infrared OpticalTransitions in Ellipsoidal Quantum Dots, Nano Lett. 1 (2001) 121.
- [8] G. Cantele, D. Ninno, G. Iadonisi, Shape effects on the one- and two-electronground state in, ellipsoidal quantum dots, Phys. Rev. B 64 (2001) 125325.
- [9] G. Cantele, G. Piacente, D. Ninno, G. Iadonisi, Optical anisotropy of ellipsoidalquantum dots, Phys. Rev. B 66 (2002) 113308.
- [10] D.A. Baghdasaryan, D.B. Hayrapetyan, E.M. Kazaryan, Prolate spheroidalquantum dot: Electronic states, direct interband light absorption and electrondipole moment, Physica B 479 (2015) 85.
- [11] H. Leon, J.L. Marin, R. Riera, Excitonic and electronic states in ellipsoidal andsemiellipsoidal, quantum dotes, Physca E 27 (2005) 385.
- [12] A. Bagga, S. Ghosh, P.K. Chattopadhyay, Energy levels in spheroidal quantumdots with finite, barrier heights, Nanotechnology 16 (2005) 2726.
- [13] A.A. Gusev, O. Chuluunbaatar, S.I. Vinitsky, K.G. Dvoyan, E.M. Kazaryan, H.A.Sarkisyan, V.L. Debrov, A.S. Klobotskaya, V.V. Serov, Adiabatic description ofnonspherical quantum, dot models, Yad. Fiz. 75 (2012) 1281.
- [14] T. Kereselidze, T. Tchelidze, T. Nadareishvili, R. Ya Keserashvili, spectra of aparticle, confined in a finite ellipsoidal shaped potential well, Physica E 81(2016) 196.
- [15] D.L. Ferreira, J.L.A. Alves, The effects of shape and size nonuniformity on theabsorption, spectrum of semiconductor quantum dots, Nanotechnology 15(2004) 975.
- [16] S. Kumar, D. Biswas, Effect of a Gaussian size distribution on the absorptionspectra of III-V semiconductor quantum dots, J. Appl. Phys. 102 (2007)084305.
- [17] K.G. Dvoyan, D.B. Hayrapetian, E.M. Kazaryan, Direct Interband LightAbsorption in Strongly Prolated Ellipsoidal Quantum Dots’ Ensemble,Nanoscale Res. Lett. 4 (2009) 106.
- [18] S. Kabi, A.G. Unil Perera, Effect of quantum dot size and size distribution onthe intersublevel, transitions and absorption coefficients of III-Vsemiconductor quantum dot, J. Appl. Phys. 117 (2015) 124303.
- [19] T. Kereselidze, T. Tchelidze, R. Ya Keserashvili, Energy levels of a particleconfined in an, ellipsoidal potential well, Physica E 68 (2015) 65.
- [20] T. Kereselidze, T. Tchelidze, A. Devdariani, Interband optical transitions inellipsoidal shaped, nanoparticles, Physica B 511 (2017) 36.
- [21] J. von Neumann, E.P. Wigner, Über das Verhalten von Eigenwerten beiadiabatischen Prozessen, Phys. Z. 30 (1929) 467.
- [22] L.D. Landau, E.M. Lifshitz, Quantum mechanics: Non-Relativistic Theory,Elsevier, Singapore, 2007.
- [23] A.G. Kurosh, Course of Higher Algebra, Gostekhizdat, Moscow, USSR, 1952.
- [24] N.A. Bethe, E.E. Salpeter, Quantum Mechanics of One and Two-ElectronAtoms, Springer-Verlag, Berlin, Germany, 1957.
- [25] Q.D. Zhuang, J.M. Li, Y.P. Zeng, L. Pan, H.X. Li, M.Y. Kong, L.Y. Lin, Strucural,characterization of InGaAs/GaAs quantum dots superlattice infraredphotodetector structures, J. Cryst. Growth 200 (1999) 375.
- [26] K. Yamaguchi, K. Yujobo, T. Kaizu, Stranski-Krastanov growth of InAs quantumdots with, narrow size distribution, Jpn. J. Appl. Phys. 39 (2000) L1245.
- [27] H.B. Dwight, Tables of Integrals and Other Mathematical Data, MacMillan,New York, USA, 1961.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b087c2da-d872-4316-8409-4c9ff023fde0