Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 47, nr 4 | 910--932
Tytuł artykułu

On bi-dimensional second μ-variation

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we present a generalization of the notion of bounded slope variation for functions defined on a rectangle Iba in R2. Given a strictly increasing function μ, defined in a closed real interval, we introduce the class BVμ,2 (Iba), of functions of bounded second μ-variation on Iba ; and show that this class can be equipped with a norm with respect to which it is a Banach space. We also deal with the important case of factorizable functions in BVμ,2 (Iba) and finally we exhibit a relation between this class and the one of double Riemann–Stieltjes integrals of functions of bi-dimensional bounded variation.
Wydawca

Rocznik
Strony
910--932
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Departamento De Matemáticas, Decanato De Ciencias Y Tecnología, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela , jereu@ucla.edu.ve
autor
  • Departamento De Matemáticas, Facultad De Ciencias Universidad, De Los Andes Mérida, Venezuela , jgimenez@ula.ve
autor
  • Escuela De Matemáticas, Universidad Central De Venezuela, Caracas, Venezuela, nmerucv@gmail.com
Bibliografia
  • [1] R. Adams, J. A. Clarkson, Properties of functions f(x,y) of bounded variation, Trans. Amer. Math. Soc. 36 (1934), 711–730.
  • [2] W. Azíz, Algunas extensiones a R2 de la noción de funciones con j-variación acotada en el sentido de Riesz y controlabilidad de las RNC, Doctoral Dissertation, Universidad Central de Venezuela, Caracas, 2009.
  • [3] D. Bugajewska, On the superposition operator in the space of functions of bounded variation, Math. Comput. Modelling 52(5–6) (2010), 791–796.
  • [4] L. Cesari, Sulle funzioni a variazione limitata, Ann. Scuola Norm. Sup. Pisa II 5(3–4) (1936), 299–313.
  • [5] P. L. Dirichelt, Sur la convergence des séries trigonemétriques que servent á représenter une function arbitraire entre des limites donnés, J. Reine Angew. Math. 4 (1826), 157–159.
  • [6] J. Ereu, J. Giménez, N. Merentes, On Bi-dimensional second variation, Comment. Math. 52(1) (2012), 39–59.
  • [7] T. Ereú, N. Merentes, B. Rzepka, J. L. Sánchez, On composition operator in the algebra of functions of two variables with bounded total Φ-variation in Schramm sense, JMA 33 (2010), 35–50.
  • [8] G. H. Hardy, On double Fourier series, and especially those which represent the double zeta-function width real and inconmesurable parameters, Quart. J. Math. Oxford. 37 (1905/06), 53–79.
  • [9] T. H. Hildebrandt, Introduction to the Theory of Integration, Academic Press, New York, 1963.
  • [10] F. N. Huggins, Bounded slope variation and generalized convexity, Proc. Amer. Math. Soc. 65 (1977), 65–69.
  • [11] C. Jordan, Sur la série de Fourier, C. R. Acad. Sci. Paris 2 (1881), 228–230.
  • [12] L. Tonelli, Sulla cuadratura délie superficie, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. 3(6) (1926), 357–362.
  • [13] N. Merentes, S. Rivas, El Operador de Composición en Espacios de Funciones con algún tipo de Variación Acotada, IX Escuela Venezolana de Matemáticas, Facultad de Ciencias-ULA, Mérida-Venezuela, 1996.
  • [14] F. Riesz, Sur certains systems singuliers d’equations integrates, Ann. Sci. Ecole Norm. Sup. Paris 3(28) (1911), 33–68.
  • [15] A. W. Roberts, D. E. Varberg, Functions of bounded convexity, Bull. Amer. Math. Soc. 75(3) (1969), 568–572.
  • [16] A. W. Roberts, D. E. Varberg, Convex Functions, Academic Press, New York–London, 1973.
  • [17] A. M. Russell, C. J. F. Upton, A generalization of a theorem by F. Riesz, Anal. Math. 9 (1983), 69–77.
  • [18] Ch. J. De La Vallée Poussin, Sur l’integrale de Lebesgue, Trans. Amer. Math. Soc. 16 (1915), 435–501.
  • [19] G. Vitali, Sulle funzioni integrali, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 40 (1904/05), 1021–1034.
  • [20] M. Wróbel, On functions of bounded n-th variation, Ann. Math. Sil. 15 (2001), 79–86.
  • [21] M. Wróbel, Uniformly bounded Nemytskij operators beteween the Banach spaces of functions of bounded n-th variation, J. Math. Anal. Appl. 391(2) (2012), 451–456.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b04cffc7-cee0-4deb-8180-b2fb98d4344f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.