Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | z. 176 | 3-118
Tytuł artykułu

Zastosowanie metod tomograficznych do badania dynamiki procesów fizjologicznych

Autorzy
Warianty tytułu
EN
An application of tomography methods to studying dynamics of physiological processes
Języki publikacji
PL
Abstrakty
PL
Niniejsza praca zawiera podsumowanie prac autora w dziedzinie zastosowania tomografii do badań in vivo procesów fizjologicznych, zachodzących w organizmie człowieka. Referując większość zagadnień, będących przedmiotem niniejszej pracy, autor skupia uwagę na przestrzenno-czasowych (4D) protokołach obrazowania, nazywanych obrazowaniem dynamicznym. W pracy opisano i zdefiniowano podstawowe pojęcia związane z dynamicznym obrazowaniem w tomografii komputerowej (KT) i w obrazowaniu techniką rezonansu magnetycznego (MRI), omówiono zastosowania tomografii dynamicznej do obrazowania ukrwienia mózgowego oraz obrazowania in vivo stężenia we krwi naturalnego środka cieniującego, jakim jest odtleniona hemoglobina (dHB). Technika ta, nazywana czynnościowym rezonansem magnetycznym, umożliwia badania procesów mózgowych człowieka. W pracy przedstwiono opis metodyki eksperymentów dynamicznych oraz przykłady aparatury i oprogramowania, wykorzystywanego przez autora w pracach badawczych dotyczących tych technik.
EN
The paper summarizes the autor's work in the area of 'in-vivo' imaging of physiological processes in living humans using spatial-temporal (4D) scanning protocols, known as dynamic imaging. The introductory chapter defines data structures ised in computed tomography (CT) and magnetic resonance imaging (MRI) dynamic scanning protocols. These data are used in applications described in the next chapter : perfusion imaging and 'in-vivo' monitoring of deoxy-hemoglobin (dHB) concentration in blood. This technique, known as functional magnetic resonance imaging (fMRI), allows to infer information about regional neuronal activity in the human brain. The paper also describes methodological aspects of dynamic imaging experiments and example instrumentation setups used by the author in his research work in this field.
Wydawca

Rocznik
Tom
Strony
3-118
Opis fizyczny
Bibliogr. 93 poz., tab., rys., wykr.
Twórcy
  • Instytut Radioelektroniki
Bibliografia
  • 1. Finn J.P., Nael K., Deshpande V. Ratib O., Laub G.: Cardiac MR imaging: state of the technology. Radiology, 2006, 241, s. 338-354.
  • 2. Decorps M., Bourgeois D.: Localized spectroscopy using static magnetic field gradients: comparison of techniques. Springer, Berlin 1992.
  • 3. Fuchs T., Kachelriess M., Kalender W.A.: Technical advances in multi-slice spiral CT. Eur. J. Radiol., 2000, 36, s. 69-73.
  • 4. Salazar H.P., Raggi P.: Usefulness of electron-beam computed tomography. Am. J. Cardio., 2002, 89, s. 17B-23B.
  • 5. Le Bihan D., Mangin J.F., Poupon C., Clark C.A., Pappata S., Molko N., Chabnat H.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging, 2001, 13, s. 534-546.
  • 6. Achenbach S., Anders K., Kalender W.A.: Dual-source cardiac computed tomography: image quality and dose considerations. Eur. Radiol., 2008, 18, s. 1188-1198.
  • 7. Ter-Pogossian M.M., Phelps M.E., Hoffman EJ., Mullani N.A.: Positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology, 1975, 114(1), s. 89-98.
  • 8. Anger H.O: Scintillation camera with multichannel collimators. J. Nuci, Med., 1964, 5, s. 515-531.
  • 9. Barbier, E.L., Lamalle L., Decorps M.: Methodology of brain perfusion imaging. J. Magn. Reson. Imaging, 2001, 13, s. 496-520.
  • 10. Moonen C.T., Liu G., van Gelderen P., Sobering G.: A fast gradient-recalled MRI technique with increased sensitivity to dynamic susceptibility effects. Magn. Reson. Med., 1992, 26, s. 184-189.
  • 11. Frahm J., Haase, A., Matthaei D.: Rapid three-dimensional MR imaging using the FLASH technique. J. Comput. Assist. Tomogr., 1986, 10, s. 363-368.
  • 12. Mansfield P: Multi-planar image formation using NMR spin echoes. Journal of Physics C: Solid State Physics, 1977, 10, s. 55-58.
  • 13. Liu G., Sobering G., Duyn J., Moonen C.T.: A functional MRI tcchnique combining principles of echo-shifting with a train of observations (PRESTO). Maen. Reson. Med., 1993, 30, s. 764-768.
  • 14. Majos A., Bogorodzki P., Piątkowska-Janko E., Wolak T., Kurjata R., Stefańczyk L.: Functional imaging with MR Tl contrast: a feasibility study with blood-pool contrast agent. Eur. Radiol., 2009, 19(4), s. 898-903.
  • 15. Rabi I., Millman S., Kusch P., Zacharias J.: The molecular beam magnetic resonance method for measuring nuclear magnetic moments: The magnetic moments of 3Li6,3Li7, and 9F19. Phys. Rev., 55, s. 526-530.
  • 16. Rabi I., Zacharias J.R., Millman S., Kusch P.: A new method of measuring nuciear magnetic moment. Phys. Rev., 1938, 53, s. 318.
  • 17. Bloch F, Hansen W. W., Packard M.: Nuclear induction. Phys. Rev., 1946, 69, s. 127.
  • 18. Hoult D., Richards R.: The signal-to-noise ratio of the nuciear magnetic resonance experiment. Journal of Magnetic Resonance (1969), 1976, 24, s. 71-85.
  • 19. Nelder J., Mead R.: A simpiex method for function minimization. The Computer Journal, 1965, 7, s. 308-313.
  • 20. König M.: Brain perfusion CT in acute stroke: current status. Eur. J. Radiol., 2003, 45 Suppl 1, s. S11-22.
  • 21. Wintermark M., Sesay M., Barbier E., Borbély K., Dillon W.P., Eastwood J.D., Glenn T.C., Grandin C.B., Pedraza S., Soustiel J., Nanai T., Zaharchuk G., Caille J., Dousset V., Yonas H.: Comparative overview of brain perfusion imaging techniques. Stroke, 2005, 36, s. e83-99.
  • 22. Friston K., Ashbumer J., Frith C., Poline J., Heather J., Frackowiak R.: Spatial registration and normalization of images. Human Brain Mapping, 1995, 2, s. 165-189.
  • 23. Ashburner J., Friston K.: Multimodal image coregistration and partitioning - a unified framework. Neuroimage, 1997, 6, s. 209-217.
  • 24. Talairach J., Tournoux P.: Co-planar stereotaxic atlas of the human brain. Thieme Medical Publishers, New York 1988.
  • 25. Evans A.C., Collins D.L., Milner B.: An mri-based stereotactic atlas from 250 young normal subjects. Soc. Neurosci. Abstr., 1992, 18, s. 408.
  • 26. Evans A.C., Collins D.L., Mills S.R., Brown E.D., Kelly R.L., Peters T.M.: 3d statistical neuroanatomical models from 305 mri volumes. Proc. IEEE - Nuclear Science Symposium and Medical Imaging Conference, 1993, s. 1813-1817.
  • 27. Ashburner J., Friston K.: Nonlinear spatial normalization using basis functions. Human Brain Mapping, 1999, 7, s. 254-266.
  • 28. Ashburner J., Friston K.: The role of registration and spatial normalization in detecting activations in functional imaging. Clinical Developments in MR, 1997, 7, s, 26-28.
  • 29. Lo E.H., Rogowska J., Bogorodzki P., Trocha M., Matsumoto K., Saffran B., Wolf G.L.: Temporal correlation analysis of penumbral dynamics in focal cerebral ischemia. J. Cereb. Blood Flow Metab., 1996, 16, s. 60-68.
  • 30. Bogorodzki P.: PERMON - Perfusion monitoring system for controlling of surgical, interventional and pharmacological treatments. 1999. Raport z realizacji projektu EUREKA. Dostępne informacje w Internecie: http://www.mpw.pw.edu.pl/pdf/wkluty5.pdf
  • 31. Rajapakse J.C., Kruggel F., Maisog J.M., von Cramon D.Y.: Modeling hemodynamic response for analysis of functional MRI time-series. Hum. Brain Mapp., 1998, 6, s. 283-300.
  • 32. Penny W.D., Stephan K.E., Mechelli A., Friston K., J.: Modelling functional integration: a comparison of structural equation and dynamic causal models. Neuroimage, 2004, 23 Suppl 1, s. S264-274.
  • 33. Friston K.J., Harrison L., Penny W.: Dynamic causal modelling. Neuroimage, 2003, 19, s. 1273-1302.
  • 34. Lancaster J.L., Woldorff M.G., Parsons L.M., Liotti M., Freitas C.S., Rainey L., Kochunov P.V., Nickerson D., Mikiten S.A., Fox P.T.: Automated Talairach atlas labels for functional brain mapping. Hum. Brain Mapp., 2000, 10, s. 120-131.
  • 35. Maldjian J.A., Laurienti P.J., Kraft R.A., Burdette J.H.: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage, 2003, 19, s. 1233-1239.
  • 36. Duncan J., Seitz R.J., Kolodny J., Bor D., Herzog H., Ahmed A., Newell F.N., Emslie H.: A neural basis for general intelligence. Science, 2000, 289, s. 457-460.
  • 37. Rencher A.: Methods of Multivariate Analysis. Wiley, 2002, s. 360-361.
  • 38. Buxton R.: Introduction to functional magnetic resonance imaging: principles and techniques. Cambridge University Press, 2002.
  • 39. Prusiński A.: Udar mózgu. Państwowy Zakład Wydawnictw Lekarskich, Warszawa 1978.
  • 40. Villringer A., Rosen B.R., Belliveau J.W., Ackerman J.L., Lauffer R.B., Buxton R.B., Chao Y. S., Wedeen V.J., Brady T.J.: Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn. Reson. Med., 1988, 6, s. 164-174.
  • 41. Duvernoy H.M., Delon S., Vannson J.L.: Cortical blood vessels of the human brain. Brain Res. Bull., 1983, 7, s. 519-579.
  • 42. Rosen B.R., [et al.]: Susceplibility contrast imaging of cerebral blood volume: human experience. Magn. Reson. Med., 1991, 22, s. 293-299; discussion 300-303.
  • 43. Boxerman J.L., Hamberg L.M., Rosen B.R., Weisskoff R.M.: MR contrast due to intravascular magnetic susceptibility perturbations. Magn. Reson. Med., 1995, 34, s. 555-566.
  • 44. Rosen B.R., Belliveau J.W., Vevea J.M., Brady T.J.: Perfusion imaging with NMR contrast agents. Magn. Reson. Med., 1990, 14, s. 249-265.
  • 45. Rosen B.R., Belliveau J.W., Chien D.: Perfusion imaging by nuclear magnetic resonance. Magn. Reson. Q, 1989, 5, s. 263-281.
  • 46. Keston P., Murray A.D., Jackson A.: Cerebral perfusion imaging using contrast-enhanced MRI. Clin. Radiol., 2003, 58, s. 505-513.
  • 47. Aksoy F.G., Lev M.H.: Dynamic contrast-enhanced brain perfusion imaging: technique and clinical applications. Semin. Ultrasound CT MR, 2000, 21, s. 462-177.
  • 48. Duyn J.H., van Gelderen P., Barker P., Frank J.A., Mattay V.S., Moonen C.T.: 3D bolus tracking with frequency-shifted BURST MRI. Journal of Computer Assisted Tomography, 1994, 18, s. 680-687.
  • 49. Tofts P.S., Shuter B., Pope J.M.: Ni-DTPA doped agarose gel a phantom material for Gd-DTPA enhancement measurements. Magn. Reson. Imaging, 1993, 11, s. 125-133.
  • 50. Bogorodzki P., Piątkowska-Janko E., Piątkowski A., Wolak T.: Analiza metod i technik obrazowania MR dla uzyskania optymalnej rozdzielczości kontrastowej w badaniach serca i dużych naczyń. 1998, Raport z realizacji grantu.
  • 51. Bogorodzki P.: Obrazowanie obszaru udaru mózgu z wykorzystaniem tomograficznych badań dynamicznych. Rozprawa doktorska, Instytut Radioelektroniki, Politechnika Warszawska, 1997.
  • 52. Mueller P.R., Wittenberg K.H., Kaufman J.A., Lee M.J.: Patterns of anesthesia and nursing care for interventional radiology procedures: a national survey of physician practices and preferences. Radiology, 1997, 202, s. 339-343.
  • 53. Killgore W.D.S., Young A.D., Femia L.A., Bogorodzki P., Rogowska J., Yurgelun-Todd D.A.: Cortical and limbic activation during viewing of high-versus low-calorie foods. Neuroimage, 2003, 19, s. 1381-1394.
  • 54. Yurgelun-Todd D.A., Rogowska J., Gruber S.A., Bogorodzki P., Simpson N.S., Irvin R.W., Jauregui K.A., Strong R.A., Rusche J.R.: Increased amygdala fMRI activation after secretin administration. Exp. Clin. Psychopharmacol., 2008, 16, s, 191-198.
  • 55. Szatkowska I., Bogorodzki P., Wolak T., Marchewka A., Szeszkowski W.: The effect of motivation on working memory: an fMRI and SEM study. Neurobiol. Learn. Mem., 2008, 90, s. 475-478.
  • 56. Bogorodzki P., Rogowska J., Yurgelun-Todd D.A.: Structural group classification technique based on regional fMRI BOLD responses. IEEE Trans. Med. Imaging, 2005, 24, s. 389-398.
  • 57. Ogawa S., Lee T.M., Kay A.R., Tank D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. U.S.A., 1990, 87, s. 9868-9872.
  • 58. Kwong K.K., [et al.]: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. U.S.A., 1992, 89, s. 5675-5679.
  • 59. Ogawa S., Tank D.W., Menon R., Ellermann J.M., Kim S.G., Merkle H., Ugurbil K.: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. U.S.A, 1992, 89, s. 5951-5955.
  • 60. Tharin S., Golby A.: Functional brain mapping and its applications to neurosurgery. Neurosurgery, 2007, 60, s. 185-201; discussion 201-202.
  • 61. Keles G.E., Berger M.S,: Advances in neurosurgical technique in the current management of brain tumors. Semin. Oncol., 2004, 31, s. 659-665.
  • 62. Wise R.G., Tracey I.: The role of fMRI in drug discovery. J. Magn. Reson. Imaging, 2006, 23, s. 862-876.
  • 63. Mitterschiffthaler M.T., Ettinger U., Mehta M.A., Mataix-Cols D., Williams S.C.R.: Applications of functional magnetic resonance imaging in psychiatry. J. Magn. Reson. Imaging, 2006, 23, s. 851-861.
  • 64. Dale A.M.: Optimal experimental design for event-related fMRI. Human Brain Mapping, 1999, 8, s.109-114.
  • 65. Long C.J., Brown E.N., Triantafyllou C., Aharon I., Wald L.L., Solo V.: Nonstationary noise estimation in functional MRI. Neuroimage, 2005, 28, s. 890-903.
  • 66. Donnet S., Lavielle M., Poline J.: Are fMRI event-related response constant in time? A model selection answer. Neuroimage, 2006, 31, s. 1169-1176.
  • 67. Zhang N., Zhu X., Chen W.: Investigating the source of BOLD nonlinearity in human visual cortex in response to paired visual stimuli. Neuroimage, 2008, 43, s. 204-212.
  • 68. Pfeuffer J., McCullough J.C., Van de Moortele P.F., Ugurbil K., Hu X.: Spatial dependence of the nonlinear BOLD response at short stimulus duration. Neuroimage, 2003, 18. s. 990-1000.
  • 69. Gautama T., Mandic D.P., Van Hulle M.M.: Signal nonlinearity in fMRI: a comparison between BOLD and MION. IEEE Trans. Med. Imaging, 2003, 22, s. 636-644.
  • 70. Logothetis N.K., Pauls J., Augath M., Trinath T., Oeltermann A.: Neurophysiological investigation of the basis of the fMRI signal. Nature, 2001, 412, s. 150-157.
  • 71. Cohen A.L., Fair D.A., Dosenbach N.U.F., Miezin F.M., Dierker D., Van Essen D.C., Schlaggar B.L., Petersen S.E.: Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage, 2008, 41, s. 45-57.
  • 72. Ravicz M.E., Melcher J.R.: Isolating the auditory system from acoustic noise during functional magnetic resonance imaging: examination of noise conduction through the ear canal, head, and body. J.Acoust. Soc.Am., 2001, 109, s. 216-231.
  • 73. Foster J.R., Hall D.A., Summerfield A.Q., Palmer A.R., Bowtell R.W.: Sound-level measurements and calculations of safe noise dosage during EPI at 3 T.J. Magn. Reson. Imaging, 2000, 12, s. 157-163.
  • 74. Scarff C.J., Dort J.C, Eggermont J.J., Goodyear B.G.: The effect of MR scanner noise on auditory cortex activity using fMRI. Human Brain Mapping, 2004, 22, s. 341-349.
  • 75. Hall D.A., Summerfield A.Q., Gonçalves M.S., Foster J.R., Palmer A.R., Bowtell R.W.: Time-course of the auditory BOLD response to scanner noise. Magn. Reson. Med., 2000, 43, s. 601-606.
  • 76. Bogorodzki P., Piątkowska-Janko E., Wolak T., Orzechowski M.: Opracowanie metodyki i aparatury do klinicznych badań czynnościowych kory słuchowej metodą funkcjonalnego rezonansu magnetycznego. 2004.
  • 77. Gati J.S., Rutt B.K., Menon R.S., Field strength dependence of functional MRI signals, In: Medical Radiology-Diagnostic Imaging and Radiation Oncology Volume, Functional MRI, Moonen C., Bandettini P.A. (eds), Springer-Verlag, Heidelberg 1998.
  • 78. Friston K.J., Holmes A., Poline J.B., Price C.J., Frith C.D.: Detecting activations in PET and fMRI: levels of inference and power. Neuroimage, 1996, 4. s. 223-235.
  • 79. Friston K.J., Holmes A.P., Poline J.B., Grasby P.J., Williams S.C., Frackowiak R.S., Turner R.: Analysis of fMRI time-series revisited. Neuroimage, 1995, 2, s. 45-53.
  • 80. Friston K.J., Frith C.D., Liddle P.F., Frackowiak R.S.: Comparing functional (PET) images: the assessment of significant change. J. Cereb. Blood Flow Metab., 1991, 11, s. 690-699.
  • 81. Friston K.J., Frith C.D., Turner R., Frackowiak R.S.: Characterizing evoked hemodynamics with fMRI. Neuroimage, 1995, 2, s. 157-165.
  • 82. Boynton G.M., Engel S.A., Glover G.H., Heeger D.J.: Linear systems analysis of functional magnetic resonance imaging in human VI. J. Neurosci., 1996, 16, s. 4207-4221.
  • 83. Friston K.J., Josephs O., Rees G., Turner R.: Nonlinear event-related responses in fMRI. Magn. Reson. Med., 1998, 39, s. 41-52.
  • 84. Purdon P.L., Weisskoff R.M.: Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI. Human Brain Mapping, 1998, 6, s. 239-249.
  • 85. Friston K.J., Holmes A.P., Price C.J., Büchel C., Worsley K.J.: Multisubject fMRI studies and conjunction analyses. Neuroimage, 1999, 10, s. 385-396.
  • 86. Bandettini P.A., Jesmanowicz A., Wong E.C., Hyde J.S.: Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med., 1993, 30, s. 161-173.
  • 87. McKeown M.J., Hansen L.K., Sejnowski T.J.: Independent component analysis of functional MRI: what is signal and what is noise? Curr. Opin. Neurobiol., 2003, 13, s. 620-629.
  • 88. McKeown M.J., Sejnowski T.J.: Independent component analysis of fMRI data: examining the assumptions. Human Brain Mapping, 1998, 6, s. 368-372.
  • 89. Bosch V.: Statistical analysis of multi-subject fMRI data: assessment of local activations. J. Magn. Reson. Imaging., 2000, 11, s, 61-64.
  • 90. Coulon O., Mangin J.F., Poline J.B., Zilbovicius M., Roumenov D., Samson Y., Frouin V., Bloch I.: Structural group analysis of functional activation maps. Neuroimage, 2000, 11, s. 767-782.
  • 91. Stephan K.E.: On the role of general system theory for functional neuroimaging. J. Anat., 2004, 205, s. 443-470.
  • 92. Genovese C.R., Lazar N.A., Nichols T.: Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 2002, 15, s. 870-878.
  • 93. Bogorodzki P., Piątkowski A.: New realization of the imagere construction│ω│-type filters using equiripple FIR and IIR structure. Engineering in Medicine and Biology Society, 1992, 14, s. 2190-2191.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0056-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.