Czasopismo
2011
|
Vol. 91, nr 2
|
77-81
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The Front Tracking based computer simulation model of solid-liquid phase transition driven by diffusion and thermo-solutal natural convection is presented, and its predictions are verified and validated by comparison with the data obtained from the other available numerical solution and the experimental study. The front tracking approach, based on local dendrite tip kinetics, is capable of distinguishing zones of columnar mush and of equiaxed grains and, thus, provides means for more precise modeling of binary alloy solidification.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
77-81
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
autor
autor
- Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland, msered@itc.pw.edu.pl
Bibliografia
- [1] W. D. Bennon, F. P. Incropera, A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems - I. model formulation, Int. J. Heat Mass Transfer 30 (1987) 2161-2170.
- [2] V. R. Voller, A. D. Brent, C. Prakash, The modelling of heat, mass and solute transport in solidification systems, Int. J. Heat Mass Transfer 32 (1989) 1719-1731.
- [3] C. J. Vreeman, F. P. Incropera, Numerical discretization of species equation source terms in binary mixture models of solidification in semicontinuous, direct chill casting systems, Heat Transfer B 36B (1999) 1-14.
- [4] M. D. Mat, O. J. Ilegbusi, Application of a hybrid model of mushy zone to macrosegregation in alloy solidification, Int. J. Heat Mass Transfer 45 (2002) 279-289.
- [5] D. J. Browne, J. D. Hunt, A fixed grind front-tracking model of the growth of a columnar front and an equiaxed grain during solidification of an alloy, Heat Transfer B 45B (2004) 395-419.
- [6] J. Banaszek, D. J. Browne, Modelling columnar dendritic growth into an undercooled metallic melt in the presence of convection, Mat. Trans. 46 (2005) 1378-1387.
- [7] M. Seredynski, J. Banaszek, Porównanie technik śledzenia frontu na stałej siatce (in Polish), Proc. 13th Symp. on Heat and Mass Transfer, Darlowko, Poland (2007) 933-940.
- [8] N. Ahmad, H. Combeau, J. L. Desbiolles, T. Jalanti, G. Lesoult, J. Rappaz, M. Rappaz, C. Stomp, Numerical simulation of macrosegregation: A comparison between finite volume method and finite element method predictions and a confrontation with experiments, Metall. Mater. Trans. A 29A (1998) 617-630.
- [9] D. J. Hebditch, J. D. Hunt, Observations of ingot macrosegregation on model systems, Metall. Trans. 5 (1974) 1557-1564.
- [10] C. Beckermann, R. Viskanta, Mathematical modeling of transport phenomena during alloy solidification, Appl. Mech. Rev. 46 (1993) 1-27.
- [11] J. Ni, F. P. Incropera, Extension of the continuum model for transport phenomena occurring during metal alloy solidification-I. the conservation equations, Int. J. Heat Mass Transfer 38 (1995) 1271-1284.
- [12] C. J. Vreeman, M. J. M. Krane, F. P. Incropera, The effect of free-floating dendrites and convection on macrosegregation in direct chill cast aluminum alloys, Part I: model development, Int. J. Heat Mass Transfer 43 (2000) 677-686.
- [13] C. R. Swaminathan, V. R. Voller, Towards a general numerical scheme for solidification systems, Int. J. Heat Mass Transfer 40 (1997) 2859-2868.
- [14] M. H. Burden, J. D. Hunt, Cellular and dendritic growth, II. J. Crystal Growth 22 (1974) 99-116.
- [15] W. Kurz, B. Giovanola, R. Trivedi, Theory of microstructural development during rapid solidification, Acta Metall. 34 (1986) 823-830.
- [16] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, 1st ed., McGraw-Hill, New York, 1980.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0051-0010