Warianty tytułu
Konferencja
Evolutionary Computation and Global Optimization 2009 / National Conference (12 ; 1-3.06.2009 ; Zawoja, Poland)
Języki publikacji
Abstrakty
We consider a general Markov chain model of genetic algorithm described in [3], Chapters 5 and 6. For this model, we establish an upper bound for the number of iterations which must be executed in order to find an optimal (or approximately optimal) solution with a prescribed probability. For the classical genetic algorithm with bitwise mutation, our result reduces to the main theorem of [1] in the case of one optimal solution, and gives some improvement over it in the case of many optimal solutions.
Rocznik
Tom
Strony
173-181
Opis fizyczny
Bibliogr. 5 poz.
Twórcy
autor
- Faculty of Mathematics and Computer Science, University of Łódź, ul. S. Banacha 22, 90-338 Łódź, Poland, marstud@math.uni.lodz.pl
Bibliografia
- [1] D. Greenhalgh, S. Marshall, Convergence criteria for genetic algorithms, SIAM Journal on Computing 30(2000), 269-282.
- [2] G.J. Koehler, S. Bhattacharya, M.D. Vose, General cardinality genetic algorithms, Evolutionary Computation 5(1998), 439-459.
- [3] C.R. Reeves, J.E. Rowe, Genetic Algorithms - Principles and Perspectives: A Guide to GA Theory, Kluwer, Boston, 2003.
- [4] J.E. Rowe, M.D. Vose, A.H. Wright, Structural search, spaces and genetic operators, Evolutionary Computation 12(2004), 461-493.
- [5] M.D. Vose. The Simple Genetic Algorithm: Foundations and Theory, MIT Press, Cambridge, Massachusetts, 1999.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0038-0021