Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | z. 165 | 237-244
Tytuł artykułu

Molecular NOR logic gate

Warianty tytułu
Konferencja
Evolutionary Computation and Global Optimization 2008 / National Conference (11 ; 2-4.06.2008 ; Szymbark, Poland)
Języki publikacji
EN
Abstrakty
EN
Molecular computing created for implementing logic systems, solving NP-difficult problems on nanoscale depends on DNA self-assembly abilities and on modifying DNA with the help of enzymes during genetic operations. In the typical DNA computing a sequence of operations executed on DNA molecules in parallel is called an algorithm, which is also determined by a model of DNA chains. This methodology is similar to the soft hardware specialized architecture driven here by heating, cooling and enzymes, especially polymerases used for copying strings. This work presents a unique approach to implementation of OR, NOR logic gates on molecules. It requires the representation of signals by DNA molecules. The presented method allows for constructing logic gates with many inputs and for executing them at the same quantity of elementary operations, regardless of a number of input signals. The NOR gate was implemented with the help of modified polymerase Taq, which stops its activity, when it meets a molecular obstacle on its way. The appropriate experiment was conducted to confirm the possibilities of the suggested implementation. Laboratory results were discussed.
Wydawca

Rocznik
Tom
Strony
237-244
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
  • Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, pwasiewi@elka.pw.edu.pl
Bibliografia
  • [1] Adleman, L.M. Molecular computation of Solutions to combinatorial problems. Science, 266, 1021-1024, 1994.
  • [2] Amos, M., Dunne, P. E. DNA simulation of boolean circuits. Dep. of Comp. Sc., Univ. of Liverpool, 1997. http://www.csc.liv.ac.uk/~ctag/archive/t/CTAG-97009.ps.gz
  • [3] Faulhammer, D., Cukras, A.R., Lipton, R.J., Landweber, L.F. When the Knight Falls: On Constructing an RNA Computer. In Proc. of the 5rd DIMACS Workshop on DNA Based Computers, held at MIT, 1999.
  • [4] Klein, J.P., Leete, T.H., Rubin, H. A biomolecular implementation of logically reversible computation with minimal energy dissipation. Biosystems, 52(1-3), 15-23, 1999.
  • [5] Lipton, R.J. Solution of Hard Computational Problems. Science 268, 542-545, 1995.
  • [6] Maniatis, T., Fritsch, E.F., and Sambrook, J. Molecular cloning: a Lab. Manual. Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY, 1982.
  • [7] Michell, J.C., Yurke, B. DNA Scissors LNCS 2340, 258-268.
  • [8] Ogihara, M., Ray, A. Simulating boolean circuits on a DNA computer. Tech. Report TR 631, Univ. of Rochester, Comp. Science Department, 1996.
  • [9] Mulawka, J.J., Nowak, R., Wąsiewicz, P., Płucienniczak, A. Processing DNA tokens in parallel computing. In Proc. Int. Parallel and Dist. Processing Symposium, 2001.
  • [10] Sakamoto, K., Kiga, D., Komiya, K., Gouzu, H., Yokoyama, S., Ikeda, S., Sugiyama, H., Hagiya, M. State transitions by molecules. In Proc. 4th DIMACS Workshop on DNA Based Computers, USA, 1998.
  • [11] Sen, D., Fahkman, R.P. DNA conformational switches as sensitive electronic sensors of analytes and as components for logic gates. In DNA Computing, 8th Int. Workshop on DNA-Based Computers, Sapporo, Japan, 2002.
  • [12] Simmel, F.C., Yurke, B. Operation of a Purified DNA Nanoactuator. LNCS 2340, 248-257.
  • [13] Smith, L.M., Corn, R.M., Condon, A.E., Lagally, M.G., Frutos, A.G., Lin, Q., Thiel, A.J. A surface-based approach to DNA computation. Journal of Computational Biology, 5, 1988.
  • [14] Stojanovic, M.N., Stefanovic, D. A Deoxyribozyme-Based Molecular Automaton. Nature Biotechnology 21, 1069-1074, 2003.
  • [15] Reif, J.H. The Design of Autonomous DNA Nanomechanical Devices: Walking and Rolling DNA. LNCS 2568, 22-37.
  • [16] Uejima, H., Hagiya, M., Kobayashi, S. Horn Clause Computation by Self-Assembly of DNA Molecules. LNCS 2340, 308-320.
  • [17] Wąsiewicz, P., Płucienniczak, A. Molecular Inference Network Experimental Approximation. In Elektronika 156, 405-412, 2006.
  • [18] Wąsiewicz, P., Malinowski, M., Płucienniczak. A. Enzyme Modification for Next Level Molecular Computing. Proc. of SPIE 2006, Wilga, 6347, part 2.
  • [19] Wąsiewicz, P., Rudnicki, R., Mulawka, J.J., Lesyng, B. Adding numbers with DNA. In Proc. 2000 IEEE Int. Conf. on Systems, 2000.
  • [20] Wąsiewicz, P., Malinowski, A., Nowak, R., Mulawka, J.J., Borsuk, P., Węgleński, P., Płucienniczak, A. DNA computing: Implementation of data flow logical operations. Future Generation Computer Systems, 17/4, 361-378, 2001.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0035-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.