Czasopismo
2011
|
R. 87, nr 7
|
280-283
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Nieokreślona ślepa separacja przy wykorzystaniu algorytmu w dziedzinie czasu i częstotliwości
Języki publikacji
Abstrakty
To solve the underdetermined blind separation (UBSS) problem, Aissa-El-Bey et al. have proposed the significant subspace-based algorithms in the time-frequency (TF) domain, where a fixed (maximum) value of K, i.e., the number of active sources overlapping at any TF point, is considered for simplicity. In this paper, based on the principle component analysis (PCA) technology, we propose a modified algorithm by estimating the number K for selected frequency bins where most energy is concentrated. Improved performances are obtained without increasing complexity.
Do rozwiązania problem nieokreślonej ślepej separacji (UBSS) Aissa-El_Bey zaproponował algorytm czasowo-częstotliwościowy gdzie ustalono liczbę aktywnych źródeł pokrywających każdy punkt TF. W artykule zaproponowano zmodyfikowany algorytm bazujący na analizie składowej głównej PCA. Otrzymano poprawę parametrów bez powiększania skomplikowania metody.
Czasopismo
Rocznik
Tom
Strony
280-283
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
autor
- Institute of Communications Engineering, PLA University of Science and Technology, leehoo86@163.com
Bibliografia
- [1] P. Bofill and M. Zibulevsky, Underdetermined blind source separation using sparse representations, Signal Processing, vol.81, pp.2353-2362, 2001.
- [2] N. Linh-Trung, A. Belouchrani, K. Abed-Meraim, et al., Separating more sources than sensors using time-frequency distributions, EURASIP J. Appl. Signals Process., vol.17, pp. 2828-2847, 2005.
- [3] D. Luengo, I. Stantamaria, and L. Vielva, A general soulution to blind inverse problems for sparse input signals: deconvolution, equalization and source separation, Neurocomputing, vol.69, pp.198-215, 2005.
- [4] Y. Li, S. Amari, A.Cichocki, et.al, Underdetermined blind source separation based on sparse representation, IEEE Trans. Signal Process., vol.54, no.2, pp.423-437, 2006.
- [5] O. Yilmaz and S.Rickard, Blind separation of speech mixtures via time-frequency masking, IEEE Trans. Signal Process., vol.52, no.7, pp.1830-1847, Jul. 2004.
- [6] A. Aissa-El-Bey, N. Linh-Trung, K. Abed-Meraim, et al., Underdetermined blind separation of nondisjoint sources in the time-frequency domain, IEEE Trans. Signal Process., vol.55, no.3, pp.897-907, Mar. 2007.
- [7] L. Cohen, Time-Frequency Analysis, Prentice-Hall PTR, Englewood Cliffs, NJ, 1995.
- [8] A. Jourjine, S. Rickard and O. Yilmaz, Blind separation of disjoint orthogonal signals: Demixing N sources form 2 mixtures, in Proc. ICASSP2000, Istanbul, Turkey, Jun. 2000.
- [9] A. Hyvarinen, J. Karhunen and E. Oja, Independent component anlysis, John Wiley & Sons, Inc., 2001.
- [10] M. Wax and T. Kailath, Detection of signals by information theoretic criteria, IEEE Trans. Acoust., Speech, Signal Process., vol.ASSP-33, no.2, pp.387-392, 1985.
- [11] R. Saab, O. Yilmaz, M.J. Mckeown, et al., Underdetermined anechoic blind source separation via lq –basis-pursuit with q ?1 , IEEE Trans. Signal Process., vol.55, no.8, pp.4004-4017, 2007.
- [12] R. Xu, D. Wunsch II, Survey of clustering algorithm, IEEE Trans. Neural Networks, vol.16, no.3, pp:645-678, 2005.
- [13] P. Bofill, Identifying single source data for mixing matrix estimation in instantaneous blind source separation, in: ICANN(1), pp:759-767, 2008.
- [14] V. G. Reju, S. N. Koh and I. Y. Soon, An algorithm for mixing estimation in instantaneous blind source separation, Signal Processing, vol.89, pp.1762-1773, 2009.
- [15] D. Peng and Y. xiang, Underdetermined blind separation based on relaxed sparsity condition of sources, IEEE Trans. Signal Process., vol.57, no.2, pp.809-814, 2009.
- [16] S. Rickard and M. Fallon, The GINI index of speech, in Conf. Inf. Sci. Syst., 2004.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA7-0046-0010