Czasopismo
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we investigate the various important prop-erties and characteristics of the subclasses Sn (p, q, α, β) and Cn (p, q, α, β) of multivalent functions with negative coefficients defined by using a differential operator. We also derive many results for the modified Hadamard products of functions belongingto the classes Sn(p, q, α, β) and Cn(p, q, α, β). Finally several applications involving an integral operator and certain fractional calculus operators are also considered.
Czasopismo
Rocznik
Tom
Strony
5-21
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Faculty of Science Mansoura University Mansoura 35516, Egypt, mkaouf127@yahoo.com
Bibliografia
- [1] S. D. Bernardi, Convex and starlike uhivalent functions, Trans. Amer. Math. Soc. 135(1969), 429-446.
- [2] M.-P. Chen, H. Irmak and H. M. Srivastava, Some multivalent functions with negative coefficients, defined by using differential operator, PanAmer. Math. J. 6(1996), no.2, 55-64.
- [3] M.-P. Chen, H. Irmak and H. M. Srivastava, Some families of multivalently analytic functions with negative coefficients, J. Math. Anal. Appl. 214(1997), 674-490.
- [4] P. L. Duren, Univalent Functions, Grundlehen der Mathematischen Wis-senschaften 259, Springer-Verlag, New York, Berlin, Heidelberg, and Tokoyo, 1983.
- [5] A. W. Goodman, Univalent Functions, Vols. I and II, Polygonal Publishing House, Washington, New Jersey, 1983.
- [6] V. P. Gupta and P. K. Jain, Certain classes of univalent functions with negative coefficients, Bull. Austral. Math. Soc. 14(1976), 409-416.
- [7] H. M. Hossen, Quasi- Hadamard product of certain p-valent functions, Demonstratio Math. 33(2000), no.2,177-281.
- [8] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16(1969), 755-758.
- [9] A. E. Livingston, On the radius of univalence of cerain analytic functions, Proc. Amer. Math. Soc. 17(1966), 352-357.
- [10] S. Owa, On the distortion theorems. I, Kyungpook Math. J. 18(1978), 55-59.
- [11] S. Owa, On certain classes of p-valent functions with negative coefficients, Simon Stevin 59 (1985), 385-402.
- [12] S. Owa, The quasi-Hadamard products of certain analytic functions in: H. M. Srivastava and S. Owa (Eds.) Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, Lnodon, and Hong Kong, 1992, 234-251.
- [13] G. S. Salagean, H. M. Hossen and M. K. Aouf, On certain classes of p-valent functions with negative coefficients. II, StudiaUniv. Babes-Bolyai 69 (2004), no. l, 77-85.
- [14] A. Schild and H. Silverman, Convolutions, of univalent functions with negative coefficients, Ann. Univ. Mariae- Curie Sklodowska Sect. A 29(1975), 99-107.
- [15] H. M. Srivastava and M.K.Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. land II, J. Math. Anal. Appl. 171(1992), 1-13; ibid. 192(1995), 973-688.
- [16] H. M. Srivastava and S. Owa (Editors), Univalent Functions, Fractional Calculus, and Their Applivations, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester,.Brisbane and Toronto, 1989.
- [17] H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
- [18] H. M. Srivastava, S. Owa and S. K. Chatterjea, A note on certain classes of starlike functions, Rend. Sem. Mat. Univ. Padova 77(1987), 115-124.
- [19] R. Yamakawa, Certain subclasses of p-valently starlike functions with negative coefficients, in : H. M. Srivastava and S. Owa (Eds.) Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992, 393-402.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA7-0031-0016