Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 29 | 91-98
Tytuł artykułu

Stability of the integral transformation of k-uniformly convex and k-starlike functions

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For a constant k ϵ [0, ∞) a normalized function f, analytic in the unit disk, is said to be k-uniformly convex if Re (1+z f" (z)/f'(z)) > k|zf"(z)/f'(z)| at any point in the unit disk. The class of k-uniformly convex functions is denoted k-UCV (cf. [8]). The function g is said to be k-starlike if g(z) = zf'(z) and f ϵ k-UCV. For analytic function f, where f(z) = z + a2z² + źźź the integral transformation is defined as follows: [wzór]. Generalized neighbourhood is defined as: [wzór]. In this note a problem of stability of the integral transformation of k-uniformly convex and k-starlike functions for TNδ neighbourhoods is investigated.
Wydawca

Rocznik
Tom
Strony
91-98
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Deprtment of Mathematics Rzeszów University of Technology W. Pola 2, P.O. Box 85 35-959 Rzeszów, Poland, ubednarz@prz.rzeszow.pl
Bibliografia
  • [1] U. Bednarz, Stability of the integral convolution in some subclasses of analytic functions,(to appear).
  • [2] U. Bednarz, S. Kanas, Stability of the integral convolution of k-uniformly convex and k-starlike functions, J. Appl. Anal. 10 (2004), 105-115.
  • [3] M. Biernacki, Sur 1'intégrale des functions univalentes, Bull. Acad. Polon. Sci. 8 (1960), 29-34.
  • [4] D. Bshouty, A note on Hadamard products of univalent functions, Proc. Amer. Math. Soc. 80(1980), 271-272.
  • [5] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), 87-92.
  • [6] W. K. Hayman, On the coefficients of univalent functions, Proc. Cambridge Philos. Soc. 55(1959), 373 - 374.
  • [7] S. Kanas, Stability of convolution and dual sets for the class of k-uniformly convex and k-starlike functions, Folia Sci. Univ. Tech. Resov., 170(1998), 51-64.
  • [8] S. Kanas, A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327 - 336.
  • [9] S. Kanas, A. Wiśniowska, Conic regions and k-starlike functions, Rev. Roumaine Math. Pures Appl., 45(3) (2000), 647-657.
  • [10] I. R. Nezhmetdinoy, Stability of geometrie properties of convolutions of unwalent functions, Russian Mathematics (Iz. VUZ) 37(11)(1993), 27 - 34.
  • [11] I. R. Nezhmetdinov, Stability of geometric properties of convolutions of univalent functions in certain neighborhoods, Russian Math. (Iz. VUZ) 8 (1994), 46-54.
  • [12] S. Ruscheweyh, Duality for Hadamard product with applications to ekstremal problems, Trans. Amer. Math., 210 (1975), 63-74.
  • [13] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81(1981), 521-527.
  • [14] S. Ruscheweyh, T. Sheil-Small, Hadamard product of schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv., 48(1973), 119-135.
  • [15] T. Sheil-Small, E. Silvia, Neighborhoods of analytic functions, J. d'Analyse Math. 52 (1989), 210-240.
  • [16] J. Stankiewicz, Z. Stankiewicz, Some classes of regular functions defined by convolution, Lecture Notes in Mathematics, 1039 (1983), Springer Yerlag, 400-408.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA7-0031-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.