Warianty tytułu
Języki publikacji
Abstrakty
We introduce a new class of sets called u-m-open sets which are defined on a family of sets satisfying m-structures with the property of being closed under arbitrary union. The sets enable us to obtain some unified properties of certain types of generalizations of Lindelof spaces.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
203-212
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
autor
- 2949-1 Shiokita-Cho, Hinagu Yatsushiro-Shi, Kumamoto-Ken 869-5142 Japan, t.noiri@infinity.com
Bibliografia
- [1] G. Balasubramanian, On some generalizations of compact spaces, Glas. Mat. 17 Ser. III (37) (1982), 367-380.
- [2] F. Cammaroto, G. Santoro, Some counter examples and properties on generalizations of Lindel of spaces, Internat. J. Math. Math. Sci. 19 (1996), 737-746.
- [3] N. Ergun, On nearly paracompact spaces, Istanbul Univ. Fen Fak. Mat. Derg. Ser. A 45 (1980), 65-87.
- [4] M. Ganster, On covering properties and generalized open sets in topological spaces, Math. Chronicle 19 (1990), 27-33.
- [5] H. Z. Hdeib, ω -closed mappings, Rev. Colombiana Mat. 16 (1982), 65-78.
- [6] H. Z. Hdeib, ω -continuous functions, Dirăsăt ser. B Pure Appl. Sci. 16 (1989), 136-142.
- [7] H. Z. Hdeib, M. S. Sarsak, On strongly Lindelöf spaces, Questions Answers Gen. Topology 18 (2000), 289-298.
- [8] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [9] S. Lugojan, Generalized topology, Stud. Cerc. Mat. 34 (1982), 348-360.
- [10] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
- [11] A. S. Mashhour, M. E. Abd El-Monsef, I. A. Hasanein, T. Noiri, Strongly compact spaces, Delta J. Sci. 8 (1984), 30-46.
- [12] M. Mršević, I. L. Reilly, M. K. Vamanamurthy, On nearly Lindelöf spaces, Glas. Mat. 21 (41) (1986), 407-414.
- [13] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [14] T. Noiri, On δ -continuous functions, J. Korean Math. Soc. 16 (1980), 161-166.
- [15] T. Noiri, V. Popa, A unified theory of closed functions, Bull. Math. Soc. Sci. R. S. Roumanie 49 (97) (2006), 371-382.
- [16] V. Popa, T. Noiri, On M-continuous functions, Anal. Univ. “Dunărea de Jos” Galaţi, Ser. Mat. Fiz. Mec. Teor. (2) 18(23) (2000), 31-41.
- [17] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. (2), 78 (1968), 103-118.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0027-0038