Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 42, nr 3 | 599-606
Tytuł artykułu

A fixed point theorem for multi-valued weakly Picard operators in b-metric space

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we establish a fixed point theorem for multi-valued operators in a complete b-metric space using the concept of Berinde and Berinde [9] on multi-valued weak contractions for the Picard iteration in a metric space. Our main result generalizes, extends and improves some of the recent results of Berinde and Berinde [9] as well as those of Daffer and Kaneko [17] and also unifies several classical results pertainning to single and multi-valued contractive mappings in the literature.
Wydawca

Rocznik
Strony
599-606
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
Bibliografia
  • [1] R. P. Agarwal, M. Mechan, D. O’Regan, Fixed Point Theory and Applications, Cambridge University Press (2001).
  • [2] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math. 3 (1922), 133-181.
  • [3] V. Berinde, A priori and a posteriori error estimates for a class of φ-contractions, Bulletins for Applied & Computing Math. (1999), 183-192.
  • [4] V. Berinde, Iterative Approximation of Fixed Points, Editura Efemeride (2002).
  • [5] V. Berinde, On the approximation of fixed points of weak φ-contractive operators, Fixed Point Theory 4 (2) (2003), 131-142.
  • [6] V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian J. Math. 19 (1) (2003), 7-22.
  • [7] V. Berinde, Approximating fixed points of weak contractions using Picard iteration, Nonlinear Anal. Forum 9 (1) (2004), 43-53.
  • [8] V. Berinde, Error estimates for approximating fixed points of quasi-contractions, General Mathematics 13 (2) (2005), 23-34.
  • [9] M. Berinde, V. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl. 326 (2007), 772-782.
  • [10] D. W. Boyd, J. S. W. Wong, On linear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.
  • [11] F. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041-1044.
  • [12] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. et Inform. Univ. Ostraviensis 1 (1993), 5-11.
  • [13] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena 46 (2) (1998), 263-276. MR1665883 (99j:54043).
  • [14] L. B. Ciric, Fixed Point Theory, Contraction Mapping Principle, FME Press, Beograd, 2003.
  • [15] L. B. Ciric, J. S. Ume, Common fixed point theorems for multi-valued non-self mappings, Publ. Math. Debrecen 60 (3-4) (2002), 359-371.
  • [16] L. B. Ciric, J. S. Ume, On the convergence of Ishikawa iterates to a common fixed point of multi-valued mappings, Demonstratio Math. 36 (4) (2003), 951-956.
  • [17] P. Z. Daffer, H. Kaneko, Fixed points of generalized contractive multi-valued mappings, J. Math. Anal. Appl. 192 (1995), 655-666.
  • [18] M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40 (1973), 604-608.
  • [19] C. Goffman, G. Pedrick, First Course in Functional Analysis, Prentice Hall of India, Private Limited, New Delhi-11000 (1993).
  • [20] S. Itoh, Multi-valued generalized contractions and fixed point theorems, Comment. Math. Univ. Carolin. 18 (1977), 247-258.
  • [21] M. C. Joshi, R. K. Bose, Some Topics in Nonlinear Functional Analysis, Wiley Eastern Limited (1985).
  • [22] H. Kaneko, A general principle for fixed points of contractive multi-valued mappings, Math. Japon. 31 (1986), 407-411.
  • [23] H. Kaneko, Generalized contractive multi-valued mappings and their fixed points, Math. Japon. 33 (1988), 57-64.
  • [24] M. A. Khamsi, W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, John Wiley & Sons, Inc. (2001).
  • [25] I. Kubiaczyk, N. M. Ali, On the convergence of the Ishikawa iterates to a common fixed point for a pair of multi-valued mappings, Acta Math. Hungar. 75 (3) (1997), 253-257.
  • [26] T. C. Lim, On fixed point stability for set-valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (2) (1985), 436-441.
  • [27] J. T. Markins, A fixed point theorem for set-valued mappings, Bull. Amer. Math. Soc. 74 (1968), 639-640.
  • [28] N. Mizoguchi, W. Takahashi, Fixed point theorems for multi-valued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), 177-188.
  • [29] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 282-291.
  • [30] M. O. Olatinwo, A generalization of some results on multi-valued weakly Picard mappings in b-metric space, Fasc. Math. 40 (2008), 45-56.
  • [31] E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pures Appl. 6 (1890), 145-210.
  • [32] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290.
  • [33] B. E. Rhoades, A fixed point theorem for a multi-valued non-self mapping, Comment. Math. Univ. Carolin. 37 (1996), 401-404.
  • [34] B. E. Rhoades, B. Watson, Fixed points for set-valued mappings on metric spaces, Math. Japon. 35 (4) (1990), 735-743.
  • [35] I. A. Rus, Fixed point theorems for multi-valued mappings in complete metric spaces, Math. Japon. 20 (1975), 21-24.
  • [36] I. A. Rus, Generalized Contractions and Applications, Cluj Univ. Press, Cluj Napoca (2001).
  • [37] I. A. Rus, Basic problems of the metric fixed point theory revisited (II), Stud. Univ. Babes-Bolyai 36 (1991), 81-99.
  • [38] I. A. Rus, A. Petrusel, G. Petrusel, Fixed Point Theory, 1950-2000, Romanian Contributions, House of the Book of Science, Cluj Napoca (2002).
  • [39] I. A. Rus, A. Petrusel, A. Sintamarian, Data dependence of the fixed point set of some multi-valued weakly Picard operators, Nonlinear Anal. 52 (2003), 1947-1959.
  • [40] S. L. Singh, C. Bhatnagar, A. M. Hashim, Round-off stability of Picard iterative procedure for multi-valued operators, Nonlinear Anal. Forum 10 (2005), 13-19.
  • [41] E. Zeidler, Nonlinear Functional Analysis and its Applications-Fixed Point Theorems, Springer-Verlag, New York, Inc. (1986).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0025-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.