Czasopismo
2009
|
Vol. 42, nr 3
|
581-598
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we study multi-step random iteration scheme with errors for a common random fixed point of a finite family of nonself asymptotically nonexpansive random mappings in real uniformly convex separable Banach spaces. The results presented in this paper extend the recent ones announced by Zhou and Wang [23] and many others.
Czasopismo
Rocznik
Tom
Strony
581-598
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- Department of Mathematics and I.T. Govt. College of Science Raipur (C.G.), India, saluja_1963@rediffmail.com
Bibliografia
- [1] I. Beg, Approximation of random fixed points in normed spaces, Nonlinear Anal. 51 (2002), no. 8, 1363-1372.
- [2] I. Beg, M. Abbas, Iterative procedures for solutions of random operator equations in Banach spaces, J. Math. Anal. Appl. 315 (2006), no. 1, 181-201.
- [3] A. T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), no. 5, 641-657.
- [4] C. E. Chidume, E. U. Ofoedu, H. Zegeye, Strong and weak convergence theorems for asymptotically nonexpansive mappings, J. Math. Anal. Appl. 280 (2003), 364-374.
- [5] T. Dominguez Benavides, G. Lopez Acedo, H. K. Xu, Random fixed points of set-valued operators, Proc. Amer. Math. Soc. 124 (1996), 831-838.
- [6] H. W. Engl, Random fixed point theorems for multivalued mappings, Pacific J. Math. 76 (1978), 351-360.
- [7] O. Hanš, Reduzierende zufallige transformationen, Czechoslovak Math. J. 7 (82) (1957), 154-158.
- [8] O. Hanš, Random operator equations, Proceeding of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. II, University of California Press, California, 1961, pp. 185-202.
- [9] S. Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), no. 2, 261-273.
- [10] T. C. Lin, Random approximations and random fixed point theorems for non-self maps, Proc. Amer. Math. Soc. 103 (1988), 1129-1135.
- [11] D. O’Regan, A continuation type result for random operators, Proc. Amer. Math. Soc. 126 (1998), 1963-1971.
- [12] R. Penaloza, A characterization of renegotiation proof contracts via random fixed points in Banach spaces, working paper 269, Department of Economics, University of Brasilia, Brasilia, December 2002.
- [13] S. Plubtieng, P. Kumam, R. Wangkeeree, Random three-step iteration scheme and common random fixed point of three operators, J. Appl. Math. Stoch. Anal. Vol. 2007, Article ID 82517, 10 pages.
- [14] S. Plubtieng, K. Ungchittrakool, Weak and strong convergence of finite family with errors of nonexpansive nonself-mappings, Fixed Point Theory and Applications Vol. 2006, Article ID 81493, pages 1-12.
- [15] J. Schu, Weak and strong convergence theorems to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153-159.
- [16] H. F. Senter, W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375-380.
- [17] N. Shahzad, Fixed points of set-valued maps, Nonlinear Anal. 45 (2001), 689-692.
- [18] N. Shahzad, Random fixed points of K-set- and pseudo-contractive random maps, Nonlinear Anal. 57 (2004), 173-181.
- [19] K. K. Tan, H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308.
- [20] D. H. Wagner, Survey of measurable selection theorem, SIAM J. Control Optim. 15 (1977), no. 5, 859-903.
- [21] L. Wang, Some results for nonself asymptotically nonexpansive mappings, Nonlinear Anal. Forum 11 (2006), 23-32.
- [22] H. K. Xu, I. Beg, Measurability of fixed point sets of multivalued random operators, J. Math. Anal. Appl. 225 (1998), 61-72.
- [23] X.W. Zhou, L.Wang, Approximation of random fixed points of nonself asymptotically nonexpansive random mappings, Internat. Math. Forum 2 (2007), No. 38, 1859-1868.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0025-0012